{"title":"A multiresolution mesh generation approach for procedural definition of complex geometry","authors":"R. Tobler, S. Maierhofer, A. Wilkie","doi":"10.1109/SMI.2002.1003526","DOIUrl":null,"url":null,"abstract":"As a general approach to procedural mesh definition we propose two mechanisms for mesh modification: generalized subdivision and rule based mesh growing. In standard subdivision, a specific subdivision rule is applied to a mesh to get a succession of meshes converging to a limit surface. A generalized approach allows different subdivision rules at each level of the subdivision process. By limiting the variations introduced at each level, convergence can be ensured: however in a number of cases it may be of advantage to exploit the expressivity of different subdivision steps at each level, without imposing any limits. Rule based mesh growing is an extension of L-systems to not only work on symbols, but connected symbols, representing faces in a mesh. This mechanism allows the controlled introduction of more complex geometry in places where it is needed to model fine details. Using both these mechanisms in combination we demonstrate, that a great variety of complex objects can be easily modeled and compactly represented.","PeriodicalId":267347,"journal":{"name":"Proceedings SMI. Shape Modeling International 2002","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings SMI. Shape Modeling International 2002","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2002.1003526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
As a general approach to procedural mesh definition we propose two mechanisms for mesh modification: generalized subdivision and rule based mesh growing. In standard subdivision, a specific subdivision rule is applied to a mesh to get a succession of meshes converging to a limit surface. A generalized approach allows different subdivision rules at each level of the subdivision process. By limiting the variations introduced at each level, convergence can be ensured: however in a number of cases it may be of advantage to exploit the expressivity of different subdivision steps at each level, without imposing any limits. Rule based mesh growing is an extension of L-systems to not only work on symbols, but connected symbols, representing faces in a mesh. This mechanism allows the controlled introduction of more complex geometry in places where it is needed to model fine details. Using both these mechanisms in combination we demonstrate, that a great variety of complex objects can be easily modeled and compactly represented.