Combined Econo-Emission Dispatch Using Particle Swarm Optimisation

E. Mithuna, C. Ismayil, D.K. Harisha
{"title":"Combined Econo-Emission Dispatch Using Particle Swarm Optimisation","authors":"E. Mithuna, C. Ismayil, D.K. Harisha","doi":"10.1109/IPRECON55716.2022.10059607","DOIUrl":null,"url":null,"abstract":"The Combined Econo- Emission Dispatch (CEED) problem of thermal power units is solved in this analysis using the traditional Lambda iteration method and the Particle Swarm optimization (PSO) method. The CEED is recast to account for load demand and system boundaries by integrating the fuel cost function, emission function, and weighting factor. Using the IEEE 14 bus and IEEE 30 bus systems, different weighting factor combinations are tested to determine the best values of power generated by each generators. The IEEE standard three and six thermal units are used as test systems for the research under various loading scenarios. The outcomes from the two approaches are compared, and based on the findings, the best combination of weighting factors is chosen.","PeriodicalId":407222,"journal":{"name":"2022 IEEE International Power and Renewable Energy Conference (IPRECON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Power and Renewable Energy Conference (IPRECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPRECON55716.2022.10059607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Combined Econo- Emission Dispatch (CEED) problem of thermal power units is solved in this analysis using the traditional Lambda iteration method and the Particle Swarm optimization (PSO) method. The CEED is recast to account for load demand and system boundaries by integrating the fuel cost function, emission function, and weighting factor. Using the IEEE 14 bus and IEEE 30 bus systems, different weighting factor combinations are tested to determine the best values of power generated by each generators. The IEEE standard three and six thermal units are used as test systems for the research under various loading scenarios. The outcomes from the two approaches are compared, and based on the findings, the best combination of weighting factors is chosen.
基于粒子群优化的联合经济排放调度
该分析采用传统的Lambda迭代法和粒子群优化(PSO)方法求解火电机组的联合经济排放调度问题。通过整合燃料成本函数、排放函数和加权因子,CEED被重新定义为考虑负载需求和系统边界。利用ieee14总线和ieee30总线系统,测试了不同的加权因子组合,以确定每个发电机产生的最佳功率值。采用IEEE标准的三热单元和六热单元作为测试系统,在不同的负载情况下进行了研究。比较了两种方法的结果,并在此基础上选择最佳的权重因子组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信