A sampling-based estimator for top-k selection query

Chung-Min Chen, Y. Ling
{"title":"A sampling-based estimator for top-k selection query","authors":"Chung-Min Chen, Y. Ling","doi":"10.1109/ICDE.2002.994779","DOIUrl":null,"url":null,"abstract":"Top-k queries arise naturally in many database applications that require searching for records whose attribute values are close to those specified in a query. We study the problem of processing a top-k query by translating it into an approximate range query that can be efficiently processed by traditional relational DBMSs. We propose a sampling-based approach, along with various query mapping strategies, to determine a range query that yields high recall with low access cost. Our experiments on real-world datasets show that, given the same memory budgets, our sampling-based estimator outperforms a previous histogram-based method in terms of access cost, while achieving the same level of recall. Furthermore, unlike the histogram-based approach, our sampling-based query mapping scheme scales well for high dimensional data and is easy to implement with low maintenance cost.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Top-k queries arise naturally in many database applications that require searching for records whose attribute values are close to those specified in a query. We study the problem of processing a top-k query by translating it into an approximate range query that can be efficiently processed by traditional relational DBMSs. We propose a sampling-based approach, along with various query mapping strategies, to determine a range query that yields high recall with low access cost. Our experiments on real-world datasets show that, given the same memory budgets, our sampling-based estimator outperforms a previous histogram-based method in terms of access cost, while achieving the same level of recall. Furthermore, unlike the histogram-based approach, our sampling-based query mapping scheme scales well for high dimensional data and is easy to implement with low maintenance cost.
top-k选择查询的基于抽样的估计器
Top-k查询在许多数据库应用程序中自然出现,这些应用程序需要搜索属性值与查询中指定的值接近的记录。我们通过将top-k查询转换为可由传统关系dbms有效处理的近似范围查询来研究处理top-k查询的问题。我们提出了一种基于抽样的方法,以及各种查询映射策略,以确定以低访问成本产生高召回的范围查询。我们在真实数据集上的实验表明,给定相同的内存预算,我们基于抽样的估计器在访问成本方面优于之前基于直方图的方法,同时达到相同的召回水平。此外,与基于直方图的方法不同,我们的基于抽样的查询映射方案适用于高维数据,并且易于实现,维护成本低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信