{"title":"A sampling-based estimator for top-k selection query","authors":"Chung-Min Chen, Y. Ling","doi":"10.1109/ICDE.2002.994779","DOIUrl":null,"url":null,"abstract":"Top-k queries arise naturally in many database applications that require searching for records whose attribute values are close to those specified in a query. We study the problem of processing a top-k query by translating it into an approximate range query that can be efficiently processed by traditional relational DBMSs. We propose a sampling-based approach, along with various query mapping strategies, to determine a range query that yields high recall with low access cost. Our experiments on real-world datasets show that, given the same memory budgets, our sampling-based estimator outperforms a previous histogram-based method in terms of access cost, while achieving the same level of recall. Furthermore, unlike the histogram-based approach, our sampling-based query mapping scheme scales well for high dimensional data and is easy to implement with low maintenance cost.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Top-k queries arise naturally in many database applications that require searching for records whose attribute values are close to those specified in a query. We study the problem of processing a top-k query by translating it into an approximate range query that can be efficiently processed by traditional relational DBMSs. We propose a sampling-based approach, along with various query mapping strategies, to determine a range query that yields high recall with low access cost. Our experiments on real-world datasets show that, given the same memory budgets, our sampling-based estimator outperforms a previous histogram-based method in terms of access cost, while achieving the same level of recall. Furthermore, unlike the histogram-based approach, our sampling-based query mapping scheme scales well for high dimensional data and is easy to implement with low maintenance cost.