{"title":"Modeling complex systems with neural network generated fuzzy reasoning","authors":"A. Ikonomopoulos, R. Uhrig, L. Tsoukalas","doi":"10.1109/ANN.1993.264312","DOIUrl":null,"url":null,"abstract":"A novel methodology is presented for the purpose of modeling complex systems through the utilization of artificial neural networks (ANNs) as linguistic value generators. Complexity is considered as a function of the distinct ways one may interact with a system and the number of separate modes required to describe these interactions. In the present approach ANN's are employed in the framework of the anticipatory paradigm. In an anticipatory system a decision is taken based not only on the current condition of the system; but also on an estimate of what the system may be doing in the near future. The prediction agency is a model of the system and/or its environment which is internal to the system. A library of ANNs is used to provide the predictive models required for computing fuzzy values. The fuzzy values describe the system behavior in a manner suitable for decision making purposes in a fuzzy environment. The methodology is demonstrated utilizing actual data obtained during a start-up period of an experimental nuclear reactor.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A novel methodology is presented for the purpose of modeling complex systems through the utilization of artificial neural networks (ANNs) as linguistic value generators. Complexity is considered as a function of the distinct ways one may interact with a system and the number of separate modes required to describe these interactions. In the present approach ANN's are employed in the framework of the anticipatory paradigm. In an anticipatory system a decision is taken based not only on the current condition of the system; but also on an estimate of what the system may be doing in the near future. The prediction agency is a model of the system and/or its environment which is internal to the system. A library of ANNs is used to provide the predictive models required for computing fuzzy values. The fuzzy values describe the system behavior in a manner suitable for decision making purposes in a fuzzy environment. The methodology is demonstrated utilizing actual data obtained during a start-up period of an experimental nuclear reactor.<>