Improving text detection by generating images with curved text instances

Leon Landeka, R. Grbić, Matteo Brisinello, M. Herceg
{"title":"Improving text detection by generating images with curved text instances","authors":"Leon Landeka, R. Grbić, Matteo Brisinello, M. Herceg","doi":"10.1109/ZINC58345.2023.10174175","DOIUrl":null,"url":null,"abstract":"Modern text detection algorithms rely on deep neural networks, which are trained on labeled datasets to achieve high performance. Despite the increasing popularity of text detection, accurate detection of text in natural images remains a challenging problem due to variations in text size, shape, color, and font. In particular, curved text instances present a unique challenge for detection algorithms, yet they are seldom found in existing text detection datasets. In this paper, we present an approach to improve curved text detection performance by generating synthetic images with curved text instances and polygon bounding regions as annotations. We train a deep neural network-based text detector on these synthetic images and evaluate its performance on test sets. Our findings highlight the importance of utilizing diverse and realistic datasets for training robust text detection systems.","PeriodicalId":383771,"journal":{"name":"2023 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC58345.2023.10174175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern text detection algorithms rely on deep neural networks, which are trained on labeled datasets to achieve high performance. Despite the increasing popularity of text detection, accurate detection of text in natural images remains a challenging problem due to variations in text size, shape, color, and font. In particular, curved text instances present a unique challenge for detection algorithms, yet they are seldom found in existing text detection datasets. In this paper, we present an approach to improve curved text detection performance by generating synthetic images with curved text instances and polygon bounding regions as annotations. We train a deep neural network-based text detector on these synthetic images and evaluate its performance on test sets. Our findings highlight the importance of utilizing diverse and realistic datasets for training robust text detection systems.
通过生成具有弯曲文本实例的图像来改进文本检测
现代文本检测算法依赖于深度神经网络,深度神经网络在标记数据集上进行训练以获得高性能。尽管文本检测越来越受欢迎,但由于文本大小、形状、颜色和字体的变化,准确检测自然图像中的文本仍然是一个具有挑战性的问题。特别是,曲线文本实例对检测算法提出了独特的挑战,但它们在现有的文本检测数据集中很少被发现。在本文中,我们提出了一种提高曲线文本检测性能的方法,该方法通过生成以曲线文本实例和多边形边界区域作为注释的合成图像来提高曲线文本检测性能。我们在这些合成图像上训练一个基于深度神经网络的文本检测器,并在测试集上评估其性能。我们的研究结果强调了利用多样化和现实的数据集来训练健壮的文本检测系统的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信