Merging R-trees

Vasilis Vasaitis, A. Nanopoulos, Panayiotis Bozanis
{"title":"Merging R-trees","authors":"Vasilis Vasaitis, A. Nanopoulos, Panayiotis Bozanis","doi":"10.1109/SSDBM.2004.50","DOIUrl":null,"url":null,"abstract":"R-trees, since their introduction in 1984, have been proven to be one of the most well-behaved practical data structures for accommodating dynamic massive sets of geometric objects and conducting a diverse set of queries on such data-sets in real-world applications. In this paper we introduce a new technique for merging two R-trees into a new one of very good quality. Our method avoids both the employment of bulk insertions and the solution of bulk-loading, from scratch, the new tree using the data of the original trees. Additionally, unlike previous approaches, it does not make any assumptions about data-set distributions. Experimental results provide evidence on the runtime efficiency of our method and illustrate the good query performance of the produced indices.","PeriodicalId":383615,"journal":{"name":"Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004.","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDBM.2004.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

R-trees, since their introduction in 1984, have been proven to be one of the most well-behaved practical data structures for accommodating dynamic massive sets of geometric objects and conducting a diverse set of queries on such data-sets in real-world applications. In this paper we introduce a new technique for merging two R-trees into a new one of very good quality. Our method avoids both the employment of bulk insertions and the solution of bulk-loading, from scratch, the new tree using the data of the original trees. Additionally, unlike previous approaches, it does not make any assumptions about data-set distributions. Experimental results provide evidence on the runtime efficiency of our method and illustrate the good query performance of the produced indices.
合并r - tree
r树自1984年被引入以来,已经被证明是一种表现良好的实用数据结构,可以容纳大量动态几何对象集,并在实际应用程序中对这些数据集进行各种查询。本文介绍了一种将两棵r树合并为一棵质量很好的新r树的新技术。我们的方法既避免了批量插入的使用,也避免了批量加载的解决方案,从头开始,使用原始树的数据创建新树。此外,与以前的方法不同,它不对数据集分布做任何假设。实验结果证明了该方法的运行效率,并说明了生成的索引具有良好的查询性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信