Polynomial bounds for decoupling, with applications

R. O'Donnell, Yu Zhao
{"title":"Polynomial bounds for decoupling, with applications","authors":"R. O'Donnell, Yu Zhao","doi":"10.4230/LIPIcs.CCC.2016.24","DOIUrl":null,"url":null,"abstract":"Let f(x) = f(x_1, ..., x_n) = \\sum_{|S| <= k} a_S \\prod_{i \\in S} x_i be an n-variate real multilinear polynomial of degree at most k, where S \\subseteq [n] = {1, 2, ..., n}. For its \"one-block decoupled\" version, \nf~(y,z) = \\sum_{|S| <= k} a_S \\sum_{i \\in S} y_i \\prod_{j \\in S\\i} z_j, \nwe show tail-bound comparisons of the form \nPr[|f~(y,z)| > C_k t] t]. \nOur constants C_k, D_k are significantly better than those known for \"full decoupling\". For example, when x, y, z are independent Gaussians we obtain C_k = D_k = O(k); when x, y, z, Rademacher random variables we obtain C_k = O(k^2), D_k = k^{O(k)}. By contrast, for full decoupling only C_k = D_k = k^{O(k)} is known in these settings. \nWe describe consequences of these results for query complexity (related to conjectures of Aaronson and Ambainis) and for analysis of Boolean functions (including an optimal sharpening of the DFKO Inequality).","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2016.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Let f(x) = f(x_1, ..., x_n) = \sum_{|S| <= k} a_S \prod_{i \in S} x_i be an n-variate real multilinear polynomial of degree at most k, where S \subseteq [n] = {1, 2, ..., n}. For its "one-block decoupled" version, f~(y,z) = \sum_{|S| <= k} a_S \sum_{i \in S} y_i \prod_{j \in S\i} z_j, we show tail-bound comparisons of the form Pr[|f~(y,z)| > C_k t] t]. Our constants C_k, D_k are significantly better than those known for "full decoupling". For example, when x, y, z are independent Gaussians we obtain C_k = D_k = O(k); when x, y, z, Rademacher random variables we obtain C_k = O(k^2), D_k = k^{O(k)}. By contrast, for full decoupling only C_k = D_k = k^{O(k)} is known in these settings. We describe consequences of these results for query complexity (related to conjectures of Aaronson and Ambainis) and for analysis of Boolean functions (including an optimal sharpening of the DFKO Inequality).
解耦的多项式界及其应用
令f(x) = f(x_1,…, x_n) = \sum_{|S| C_k t] t]。我们的常数C_k, D_k明显优于那些已知的“完全解耦”。例如,当x, y, z是独立的高斯函数时,我们得到C_k = D_k = O(k);当x, y, z, Rademacher随机变量时,我们得到C_k = O(k^2), D_k = k^{O(k)}。相比之下,对于完全解耦,在这些设置中只有C_k = D_k = k^{O(k)}是已知的。我们描述了这些结果对查询复杂性(与Aaronson和Ambainis的猜想有关)和布尔函数分析(包括DFKO不等式的最佳锐化)的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信