Multiplicity of Scator Roots and the Square Roots in $\mathbb{S}^{1+2}$

M. Fernandez-Guasti
{"title":"Multiplicity of Scator Roots and the Square Roots in $\\mathbb{S}^{1+2}$","authors":"M. Fernandez-Guasti","doi":"10.53570/jnt.1188215","DOIUrl":null,"url":null,"abstract":"This paper presents the roots of elliptic scator numbers in $\\mathbb{S}^{1+n}$, which includes both the fundamental $2\\pi$ symmetry and the $\\pi$-pair symmetry for $n\\geq2$. Here, the scator set $\\mathbb{S}^{1+n}$ is a subset of $\\mathbb{R}^{1+n}$ with the scator product and the multiplicative representation. These roots are expressed in terms of both additive (rectangular) and multiplicative (polar) variables. Additionally, the paper provides a comprehensive description of square roots in $\\mathbb{S}^{1+2}$, which includes a geometrical representation in three-dimensional space that provides a clear visualization of the concept and makes it easier to understand and interpret. Finally, the paper handles whether the aspects should be further investigated.","PeriodicalId":347850,"journal":{"name":"Journal of New Theory","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53570/jnt.1188215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the roots of elliptic scator numbers in $\mathbb{S}^{1+n}$, which includes both the fundamental $2\pi$ symmetry and the $\pi$-pair symmetry for $n\geq2$. Here, the scator set $\mathbb{S}^{1+n}$ is a subset of $\mathbb{R}^{1+n}$ with the scator product and the multiplicative representation. These roots are expressed in terms of both additive (rectangular) and multiplicative (polar) variables. Additionally, the paper provides a comprehensive description of square roots in $\mathbb{S}^{1+2}$, which includes a geometrical representation in three-dimensional space that provides a clear visualization of the concept and makes it easier to understand and interpret. Finally, the paper handles whether the aspects should be further investigated.
$\mathbb{S}^{1+2}$中分散子根和平方根的多重性
本文给出了$\mathbb{S}^{1+n}$中椭圆散射子数的根,它包括了$n\geq2$的基本的$2\pi$对称和$\pi$ -对对称。这里,分配器集$\mathbb{S}^{1+n}$是$\mathbb{R}^{1+n}$的一个子集,具有分配器乘积和乘法表示。这些根用加法(矩形)和乘法(极坐标)变量来表示。此外,本文在$\mathbb{S}^{1+2}$中提供了对平方根的全面描述,其中包括三维空间中的几何表示,提供了一个清晰的可视化概念,使其更容易理解和解释。最后,对是否需要进一步研究的问题进行了探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信