GPU accelerated fast FEM deformation simulation

Youquan Liu, Shaohui Jiao, Wen Wu, S. De
{"title":"GPU accelerated fast FEM deformation simulation","authors":"Youquan Liu, Shaohui Jiao, Wen Wu, S. De","doi":"10.1109/APCCAS.2008.4746096","DOIUrl":null,"url":null,"abstract":"In this paper we present a general FEM (finite element method) solution that enables fast dynamic deformation simulation on the newly available GPU (graphics processing unit) hardware with compute unified device architecture (CUDA) from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We not only implement FEM deformation computation algorithms with CUDA but also analyze the performance in detail. Our test results indicate that the GPU with CUDA enables about 4 times speedup for FEM deformation computation on an Intel(R) Core 2 Quad 2.0 GHz machine with GeForce 8800 GTX.","PeriodicalId":344917,"journal":{"name":"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2008.4746096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

In this paper we present a general FEM (finite element method) solution that enables fast dynamic deformation simulation on the newly available GPU (graphics processing unit) hardware with compute unified device architecture (CUDA) from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We not only implement FEM deformation computation algorithms with CUDA but also analyze the performance in detail. Our test results indicate that the GPU with CUDA enables about 4 times speedup for FEM deformation computation on an Intel(R) Core 2 Quad 2.0 GHz machine with GeForce 8800 GTX.
GPU加速快速有限元变形模拟
在本文中,我们提出了一种通用的FEM(有限元法)解决方案,该解决方案能够在NVIDIA最新可用的GPU(图形处理单元)硬件上使用计算统一设备架构(CUDA)进行快速动态变形模拟。支持cuda的gpu利用128个处理器的能力,允许数据并行计算。与以前的GPGPU相比,它具有C语言接口,明显更加灵活。利用CUDA实现了有限元变形计算算法,并对其性能进行了详细分析。我们的测试结果表明,在带有GeForce 8800 GTX的Intel(R) Core 2 Quad 2.0 GHz机器上,带有CUDA的GPU可以使FEM变形计算加速约4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信