Automatic Discovery and Transfer of MAXQ Hierarchies in a Complex System

Hongbing Wang, Wenya Li, Xuan Zhou
{"title":"Automatic Discovery and Transfer of MAXQ Hierarchies in a Complex System","authors":"Hongbing Wang, Wenya Li, Xuan Zhou","doi":"10.1109/ICTAI.2012.165","DOIUrl":null,"url":null,"abstract":"Reinforcement learning has been an important category of machine learning approaches exhibiting self-learning and online learning characteristics. Using reinforcement learning, an agent can learn its behaviors through trial-and-error interactions with a dynamic environment and finally come up with an optimal strategy. Reinforcement learning suffers the curse of dimensionality, though there has been significant progress to overcome this issue in recent years. MAXQ is one of the most common approaches for reinforcement learning. To function properly, MAXQ requires a decomposition of the agent's task into a task hierarchy. Previously, the decomposition can only be done manually. In this paper, we propose a mechanism for automatic subtask discovery. The mechanism applies clustering to automatically construct task hierarchy required by MAXQ, such that MAXQ can be fully automated. We present the design of our mechanism, and demonstrate its effectiveness through theoretical analysis and an extensive experimental evaluation.","PeriodicalId":155588,"journal":{"name":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2012.165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Reinforcement learning has been an important category of machine learning approaches exhibiting self-learning and online learning characteristics. Using reinforcement learning, an agent can learn its behaviors through trial-and-error interactions with a dynamic environment and finally come up with an optimal strategy. Reinforcement learning suffers the curse of dimensionality, though there has been significant progress to overcome this issue in recent years. MAXQ is one of the most common approaches for reinforcement learning. To function properly, MAXQ requires a decomposition of the agent's task into a task hierarchy. Previously, the decomposition can only be done manually. In this paper, we propose a mechanism for automatic subtask discovery. The mechanism applies clustering to automatically construct task hierarchy required by MAXQ, such that MAXQ can be fully automated. We present the design of our mechanism, and demonstrate its effectiveness through theoretical analysis and an extensive experimental evaluation.
复杂系统中MAXQ层次的自动发现与传递
强化学习是机器学习方法的一个重要类别,具有自我学习和在线学习的特点。使用强化学习,智能体可以通过与动态环境的试错交互来学习其行为,并最终提出最优策略。强化学习遭受维度的诅咒,尽管近年来在克服这个问题方面取得了重大进展。MAXQ是强化学习最常用的方法之一。为了正常工作,MAXQ需要将代理的任务分解为任务层次结构。以前,分解只能手工完成。本文提出了一种自动发现子任务的机制。该机制应用集群来自动构建MAXQ所需的任务层次结构,从而使MAXQ可以完全自动化。我们提出了我们的机制设计,并通过理论分析和广泛的实验评估证明了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信