Efficient Deep Models for Real-Time 4K Image Super-Resolution. NTIRE 2023 Benchmark and Report

†. MarcosV.Conde, †. EduardZamfir, R. Timofte, Daniel Motilla, Cen Liu, Zexin Zhang, Yunbo Peng, Yue Lin, Jiaming Guo, X. Zou, Yu-Yi Chen, Yi Liu, Jiangnan Hao, Youliang Yan, Yuan Zhang, Gen Li, Lei Sun, Lingshun Kong, Haoran Bai, Jin-shan Pan, Jiangxin Dong, Jinhui Tang, Mustafa Ayazoglu Bahri, Batuhan Bilecen, Mingxiu Li, Yuhang Zhang, Xianjun Fan, Yan Sheng, Long Sun, Zibin Liu, Weiran Gou, Sha Li, Ziyao Yi, Yan Xiang, Dehui Kong, Ke Xu, G. Gankhuyag, Kuk-jin Yoon, Jin Zhang, G. Yu, Feng Zhang, Hongbin Wang, Zhou Zhou, Jiahao Chao, Hong-Xin Gao, Jiali Gong, Zhengfeng Yang, Zhenbing Zeng, Cheng-An Chen, Zichao Guo, Anjin Park, Yu Qi, Hongyuan Jia, Xuan Yu, K. Yin, Dongyang Zuo, Zhang Ting, Zhengxue Fu, Cheng Shiai, Dajiang Zhu, Hong Zhou, Weichen Yu, Jiahua Dong, Yajun Zou, Zhuoyuan Wu, B. Han, Xiaolin Zhang, He Zhang, X. Yin, Benke Shao, Shaolong Zheng, Daheng Yin, Baijun Chen, Mengyang Liu, Marian-Sergiu Nistor, Yi-Chung Chen, Zhi-Kai Huang, Yuan Chiang, Wei-Ting Chen, Hao Yang, Hua-En Chang, I-Hsiang
{"title":"Efficient Deep Models for Real-Time 4K Image Super-Resolution. NTIRE 2023 Benchmark and Report","authors":"†. MarcosV.Conde, †. EduardZamfir, R. Timofte, Daniel Motilla, Cen Liu, Zexin Zhang, Yunbo Peng, Yue Lin, Jiaming Guo, X. Zou, Yu-Yi Chen, Yi Liu, Jiangnan Hao, Youliang Yan, Yuan Zhang, Gen Li, Lei Sun, Lingshun Kong, Haoran Bai, Jin-shan Pan, Jiangxin Dong, Jinhui Tang, Mustafa Ayazoglu Bahri, Batuhan Bilecen, Mingxiu Li, Yuhang Zhang, Xianjun Fan, Yan Sheng, Long Sun, Zibin Liu, Weiran Gou, Sha Li, Ziyao Yi, Yan Xiang, Dehui Kong, Ke Xu, G. Gankhuyag, Kuk-jin Yoon, Jin Zhang, G. Yu, Feng Zhang, Hongbin Wang, Zhou Zhou, Jiahao Chao, Hong-Xin Gao, Jiali Gong, Zhengfeng Yang, Zhenbing Zeng, Cheng-An Chen, Zichao Guo, Anjin Park, Yu Qi, Hongyuan Jia, Xuan Yu, K. Yin, Dongyang Zuo, Zhang Ting, Zhengxue Fu, Cheng Shiai, Dajiang Zhu, Hong Zhou, Weichen Yu, Jiahua Dong, Yajun Zou, Zhuoyuan Wu, B. Han, Xiaolin Zhang, He Zhang, X. Yin, Benke Shao, Shaolong Zheng, Daheng Yin, Baijun Chen, Mengyang Liu, Marian-Sergiu Nistor, Yi-Chung Chen, Zhi-Kai Huang, Yuan Chiang, Wei-Ting Chen, Hao Yang, Hua-En Chang, I-Hsiang","doi":"10.1109/CVPRW59228.2023.00154","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel benchmark for efficient up-scaling as part of the NTIRE 2023 Real-Time Image Super-Resolution (RTSR) Challenge, which aimed to upscale images from 720p and 1080p resolution to native 4K (×2 and ×3 factors) in real-time on commercial GPUs. For this, we use a new test set containing diverse 4K images ranging from digital art to gaming and photography. We assessed the methods devised for 4K SR by measuring their runtime, parameters, and FLOPs, while ensuring a minimum PSNR fidelity over Bicubic interpolation. Out of the 170 participants, 25 teams contributed to this report, making it the most comprehensive benchmark to date and showcasing the latest advancements in real-time SR.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper introduces a novel benchmark for efficient up-scaling as part of the NTIRE 2023 Real-Time Image Super-Resolution (RTSR) Challenge, which aimed to upscale images from 720p and 1080p resolution to native 4K (×2 and ×3 factors) in real-time on commercial GPUs. For this, we use a new test set containing diverse 4K images ranging from digital art to gaming and photography. We assessed the methods devised for 4K SR by measuring their runtime, parameters, and FLOPs, while ensuring a minimum PSNR fidelity over Bicubic interpolation. Out of the 170 participants, 25 teams contributed to this report, making it the most comprehensive benchmark to date and showcasing the latest advancements in real-time SR.
实时4K图像超分辨率的高效深度模型。2023年全年基准和报告
作为NTIRE 2023实时图像超分辨率(RTSR)挑战的一部分,本文介绍了一种新的高效升级基准,旨在在商用gpu上实时将图像从720p和1080p分辨率提升到原生4K (×2和×3因子)。为此,我们使用了一个新的测试集,其中包含从数字艺术到游戏和摄影的各种4K图像。我们通过测量其运行时间、参数和FLOPs来评估为4K SR设计的方法,同时确保比双三次插值具有最低的PSNR保真度。在170个参与者中,有25个团队为这份报告做出了贡献,使其成为迄今为止最全面的基准,展示了实时SR的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信