P. Viswanathan, T. Southey, J. Little, Alan K. Mackworth
{"title":"Automated Place Classification Using Object Detection","authors":"P. Viswanathan, T. Southey, J. Little, Alan K. Mackworth","doi":"10.1109/CRV.2010.49","DOIUrl":null,"url":null,"abstract":"Places in an environment can be described by the objects they contain. This paper discusses the completely automated integration of object detection and place classification in a single system. We first perform automated learning of object-place relations from an online annotated database. We then train object detectors on some of the most frequently occurring objects. Finally, we use detection scores as well as learned object-place relations to perform place classification of images. We also discuss areas for improvement and the application of this work to informed visual search. As a whole, the system demonstrates the automated acquisition of training data containing labeled instances (i.e. bounding boxes) and the performance of a state-of-the-art object detection technique trained on this data to perform place classification of realistic indoor scenes.","PeriodicalId":358821,"journal":{"name":"2010 Canadian Conference on Computer and Robot Vision","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2010.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Places in an environment can be described by the objects they contain. This paper discusses the completely automated integration of object detection and place classification in a single system. We first perform automated learning of object-place relations from an online annotated database. We then train object detectors on some of the most frequently occurring objects. Finally, we use detection scores as well as learned object-place relations to perform place classification of images. We also discuss areas for improvement and the application of this work to informed visual search. As a whole, the system demonstrates the automated acquisition of training data containing labeled instances (i.e. bounding boxes) and the performance of a state-of-the-art object detection technique trained on this data to perform place classification of realistic indoor scenes.