Chih-Lung Chen, Yu-Cheng Lan, Hsie-Chia Chang, Chen-Yi Lee
{"title":"A 3.66Gb/s 275mW TB-LDPC-CC decoder chip for MIMO broadcasting communications","authors":"Chih-Lung Chen, Yu-Cheng Lan, Hsie-Chia Chang, Chen-Yi Lee","doi":"10.1109/ASSCC.2013.6691005","DOIUrl":null,"url":null,"abstract":"In this work, a decoder chip for time-invariant tail-biting LDPC convolutional code (TB-LDPC-CC) is proposed. By modifying the layered decoding scheduling, the proposed decoding algorithm can achieve twice faster decoding convergence than the conventional flooding scheduling. Furthermore, 30.77% storage requirement is also reduced due to adaptive channel value addressing employed in memory-based decoder design. The multiple frame sizes handling ability can lower the power and adapt to multiple applications. By integrating these techniques, a TB-LDPC-CC decoder chip supporting three frame sizes is implemented in UMC 90nm CMOS technology. The decoder containing 4 processors occupies 2.18mm2 area and provides maximum throughput 3.66Gb/s under 0.8V supply and 305MHz with a 18.8pJ/bit/proc energy efficiency.","PeriodicalId":296544,"journal":{"name":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2013.6691005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this work, a decoder chip for time-invariant tail-biting LDPC convolutional code (TB-LDPC-CC) is proposed. By modifying the layered decoding scheduling, the proposed decoding algorithm can achieve twice faster decoding convergence than the conventional flooding scheduling. Furthermore, 30.77% storage requirement is also reduced due to adaptive channel value addressing employed in memory-based decoder design. The multiple frame sizes handling ability can lower the power and adapt to multiple applications. By integrating these techniques, a TB-LDPC-CC decoder chip supporting three frame sizes is implemented in UMC 90nm CMOS technology. The decoder containing 4 processors occupies 2.18mm2 area and provides maximum throughput 3.66Gb/s under 0.8V supply and 305MHz with a 18.8pJ/bit/proc energy efficiency.