{"title":"Distributed computing with hierarchical master-worker paradigm for parallel branch and bound algorithm","authors":"K. Aida, Wataru Natsume, Y. Futakata","doi":"10.1109/CCGRID.2003.1199364","DOIUrl":null,"url":null,"abstract":"This paper discusses the impact of the hierarchical master-worker paradigm on performance of an application program, which solves an optimization problem by a parallel branch and bound algorithm on a distributed computing system. The application program, which this paper addresses, solves the BMI Eigenvalue Problem, which is an optimization problem to minimize the greatest eigenvalue of a bilinear matrix function. This paper proposes a parallel branch and bound algorithm to solve the BMI Eigenvalue Problem with the hierarchical master-worker paradigm. The experimental results showed that the conventional algorithm with the master-worker paradigm significantly degraded performance on a Grid test bed, where computing resources were distributed on WAN via a firewall; however, the hierarchical master-worker paradigm sustained good performance.","PeriodicalId":433323,"journal":{"name":"CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2003.1199364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77
Abstract
This paper discusses the impact of the hierarchical master-worker paradigm on performance of an application program, which solves an optimization problem by a parallel branch and bound algorithm on a distributed computing system. The application program, which this paper addresses, solves the BMI Eigenvalue Problem, which is an optimization problem to minimize the greatest eigenvalue of a bilinear matrix function. This paper proposes a parallel branch and bound algorithm to solve the BMI Eigenvalue Problem with the hierarchical master-worker paradigm. The experimental results showed that the conventional algorithm with the master-worker paradigm significantly degraded performance on a Grid test bed, where computing resources were distributed on WAN via a firewall; however, the hierarchical master-worker paradigm sustained good performance.