Optimal Estimation for Power of Variance with Application to Gene-Set Testing

Min Xiao, Ting-Ju Chen, Kunpeng Huang, Rui-xing Ming
{"title":"Optimal Estimation for Power of Variance with Application to Gene-Set Testing","authors":"Min Xiao, Ting-Ju Chen, Kunpeng Huang, Rui-xing Ming","doi":"10.21078/JSSI-2020-549-16","DOIUrl":null,"url":null,"abstract":"Abstract Detecting differential expression of genes in genom research (e.g., 2019-nCoV) is not uncommon, due to the cost only small sample is employed to estimate a large number of variances (or their inverse) of variables simultaneously. However, the commonly used approaches perform unreliable. Borrowing information across different variables or priori information of variables, shrinkage estimation approaches are proposed and some optimal shrinkage estimators are obtained in the sense of asymptotic. In this paper, we focus on the setting of small sample and a likelihood-unbiased estimator for power of variances is given under the assumption that the variances are chi-squared distribution. Simulation reports show that the likelihood-unbiased estimators for variances and their inverse perform very well. In addition, application comparison and real data analysis indicate that the proposed estimator also works well.","PeriodicalId":258223,"journal":{"name":"Journal of Systems Science and Information","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Science and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21078/JSSI-2020-549-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Detecting differential expression of genes in genom research (e.g., 2019-nCoV) is not uncommon, due to the cost only small sample is employed to estimate a large number of variances (or their inverse) of variables simultaneously. However, the commonly used approaches perform unreliable. Borrowing information across different variables or priori information of variables, shrinkage estimation approaches are proposed and some optimal shrinkage estimators are obtained in the sense of asymptotic. In this paper, we focus on the setting of small sample and a likelihood-unbiased estimator for power of variances is given under the assumption that the variances are chi-squared distribution. Simulation reports show that the likelihood-unbiased estimators for variances and their inverse perform very well. In addition, application comparison and real data analysis indicate that the proposed estimator also works well.
方差的最优估计及其在基因集检验中的应用
在基因组研究中检测基因差异表达(例如2019-nCoV)并不罕见,由于成本原因,仅使用小样本同时估计大量变量的方差(或其逆)。然而,常用的方法并不可靠。利用不同变量间的信息或变量间的先验信息,提出了收缩估计方法,并在渐近意义下得到了一些最优收缩估计量。本文主要研究了小样本的设置,在方差为卡方分布的假设下,给出了方差幂的似然无偏估计。仿真报告表明,方差及其逆的似然无偏估计器性能良好。此外,应用对比和实际数据分析表明,所提出的估计器也具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信