{"title":"Design of CMOS Inverter and Chain of Inverters Using Neural Networks","authors":"Likhit Valavala, Kalpit Munot, K. R. Teja","doi":"10.1109/ises.2018.00065","DOIUrl":null,"url":null,"abstract":"This paper employs a model based on Artificial Neural Networks (ANN) to design a CMOS Inverter and Chain of Inverters and determine how accurately the ANN based designs are able to model the complex, non-linear problem of circuit design. ANN is designed to predict the performance parameters of a CMOS Inverter and chain of inverters for a given process technology. A function fitting ANN with Bayesian Backpropagation Regularization as the training algorithm was designed with three hidden layers of sizes 20, 10, 8 respectively. Test performances of 99% were obtained in the various studies performed. These results show that ANNs have a high accuracy and are able to adapt as the complexity of the circuit increases.","PeriodicalId":447663,"journal":{"name":"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ises.2018.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper employs a model based on Artificial Neural Networks (ANN) to design a CMOS Inverter and Chain of Inverters and determine how accurately the ANN based designs are able to model the complex, non-linear problem of circuit design. ANN is designed to predict the performance parameters of a CMOS Inverter and chain of inverters for a given process technology. A function fitting ANN with Bayesian Backpropagation Regularization as the training algorithm was designed with three hidden layers of sizes 20, 10, 8 respectively. Test performances of 99% were obtained in the various studies performed. These results show that ANNs have a high accuracy and are able to adapt as the complexity of the circuit increases.