{"title":"Sentimental Analysis Applications and Approaches during COVID-19: A Survey","authors":"Areeba Umair, E. Masciari, Muhammad Habib Ullah","doi":"10.1145/3472163.3472274","DOIUrl":null,"url":null,"abstract":"The social media and electronic media has a vast amount of user-generated data such as people’ comment and reviews about different product, diseases, government policies etc. Sentimental analysis is the emerging field in text mining where people’s feeling and emotions are extracted using different techniques. COVID-19 has declared as pandemic and effected people’s lives all over the globe. It caused the feelings of fear, anxiety, anger, depression and many other psychological issues. In this survey paper, the sentimental analysis applications and methods which are used for COVID-19 research are briefly presented. The comparison of thirty primary studies shows that Naive Bayes and SVM are the widely used algorithms of sentimental analysis for COVID-19 research. The applications of sentimental analysis during COVID includes the analysis of people’s sentiments specially students, reopening sentiments, analysis of restaurants reviews and analysis of vaccine sentiments.","PeriodicalId":242683,"journal":{"name":"Proceedings of the 25th International Database Engineering & Applications Symposium","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Database Engineering & Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472163.3472274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The social media and electronic media has a vast amount of user-generated data such as people’ comment and reviews about different product, diseases, government policies etc. Sentimental analysis is the emerging field in text mining where people’s feeling and emotions are extracted using different techniques. COVID-19 has declared as pandemic and effected people’s lives all over the globe. It caused the feelings of fear, anxiety, anger, depression and many other psychological issues. In this survey paper, the sentimental analysis applications and methods which are used for COVID-19 research are briefly presented. The comparison of thirty primary studies shows that Naive Bayes and SVM are the widely used algorithms of sentimental analysis for COVID-19 research. The applications of sentimental analysis during COVID includes the analysis of people’s sentiments specially students, reopening sentiments, analysis of restaurants reviews and analysis of vaccine sentiments.