Specialized mappings and the estimation of human body pose from a single image

Rómer Rosales, S. Sclaroff
{"title":"Specialized mappings and the estimation of human body pose from a single image","authors":"Rómer Rosales, S. Sclaroff","doi":"10.1109/HUMO.2000.897366","DOIUrl":null,"url":null,"abstract":"We present an approach for recovering articulated body pose from single monocular images using the Specialized Mappings Architecture (SMA), a nonlinear supervised learning architecture. SMAs consist of several specialized forward (input to output space) mapping functions and a feedback matching function, estimated automatically from data. Each of these forward functions maps certain areas (possibly disconnected) of the input space onto the output space. A probabilistic model for the architecture is first formalized along with a mechanism for learning its parameters. The learning problem is approached using a maximum likelihood estimation framework; we present expectation maximization (EM) algorithms for several different choices of the likelihood function. The performance of the presented solutions under these different likelihood functions is compared in the task of estimating human body posture from low-level visual features obtained from a single image, showing promising results.","PeriodicalId":384462,"journal":{"name":"Proceedings Workshop on Human Motion","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Workshop on Human Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMO.2000.897366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

We present an approach for recovering articulated body pose from single monocular images using the Specialized Mappings Architecture (SMA), a nonlinear supervised learning architecture. SMAs consist of several specialized forward (input to output space) mapping functions and a feedback matching function, estimated automatically from data. Each of these forward functions maps certain areas (possibly disconnected) of the input space onto the output space. A probabilistic model for the architecture is first formalized along with a mechanism for learning its parameters. The learning problem is approached using a maximum likelihood estimation framework; we present expectation maximization (EM) algorithms for several different choices of the likelihood function. The performance of the presented solutions under these different likelihood functions is compared in the task of estimating human body posture from low-level visual features obtained from a single image, showing promising results.
专门的映射和估计人体姿势从一个单一的图像
我们提出了一种使用非线性监督学习架构——专门映射架构(SMA)从单眼图像中恢复关节身体姿势的方法。sma由几个专门的前向(输入到输出空间)映射函数和一个反馈匹配函数组成,从数据中自动估计。这些前向函数中的每一个都将输入空间的某些区域(可能是不相连的)映射到输出空间。首先将体系结构的概率模型与学习其参数的机制一起形式化。使用极大似然估计框架来解决学习问题;针对几种不同的似然函数选择,提出了期望最大化算法。在从单幅图像中获得的低级视觉特征估计人体姿态的任务中,比较了这些不同似然函数下所提出的解决方案的性能,显示出令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信