Data and Predictive Model Integration: An Overview of Key Concepts, Problems and Solutions

F. Azuaje, J. Dopazo, Haiying Wang
{"title":"Data and Predictive Model Integration: An Overview of Key Concepts, Problems and Solutions","authors":"F. Azuaje, J. Dopazo, Haiying Wang","doi":"10.1002/0470094419.CH3","DOIUrl":null,"url":null,"abstract":"This chapter overviews the combination of different data sources and techniques for improving functional prediction. Key concepts, requirements and approaches are introduced. It discusses two main strategies: a) Integrative data analysis and visualisation approaches with an emphasis on the processing of multiple data types or resources; and b) integrative data analysis and visualisation approaches with an emphasis on the combination of multiple predictive models and analysis techniques. It also illustrates problems in which both methodologies can be successfully applied.","PeriodicalId":268206,"journal":{"name":"Data Analysis and Visualization in Genomics and Proteomics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Analysis and Visualization in Genomics and Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/0470094419.CH3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter overviews the combination of different data sources and techniques for improving functional prediction. Key concepts, requirements and approaches are introduced. It discusses two main strategies: a) Integrative data analysis and visualisation approaches with an emphasis on the processing of multiple data types or resources; and b) integrative data analysis and visualisation approaches with an emphasis on the combination of multiple predictive models and analysis techniques. It also illustrates problems in which both methodologies can be successfully applied.
数据和预测模型集成:关键概念、问题和解决方案概述
本章概述了用于改进功能预测的不同数据源和技术的组合。介绍了关键概念、要求和方法。它讨论了两个主要策略:a)综合数据分析和可视化方法,重点是处理多种数据类型或资源;b)综合数据分析和可视化方法,重点是多种预测模型和分析技术的结合。它还说明了两种方法可以成功应用的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信