Segmentation of skin cancer images using an extension of Chan and Vese model

F. Adjed, I. Faye, F. Ababsa
{"title":"Segmentation of skin cancer images using an extension of Chan and Vese model","authors":"F. Adjed, I. Faye, F. Ababsa","doi":"10.1109/ICITEED.2015.7408987","DOIUrl":null,"url":null,"abstract":"Recently, more attention is given to automatic detection of cancer. However, the multitude kind of cancer (lung, breast, brain, skin etc.) complicates the detection of this disease with common approaches. An adaptive method for each cancer is the only response to achieve this aim. The segmentation of interest region is the first main step to differentiate between the suspicious and non suspicious part in the image. In this specific work, we focus on a segmentation approach based on Total Variation methods. We propose a generalization of Chan and Vese (CV) model theory and implement it to the particular case of skin cancer images.","PeriodicalId":207985,"journal":{"name":"2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2015.7408987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Recently, more attention is given to automatic detection of cancer. However, the multitude kind of cancer (lung, breast, brain, skin etc.) complicates the detection of this disease with common approaches. An adaptive method for each cancer is the only response to achieve this aim. The segmentation of interest region is the first main step to differentiate between the suspicious and non suspicious part in the image. In this specific work, we focus on a segmentation approach based on Total Variation methods. We propose a generalization of Chan and Vese (CV) model theory and implement it to the particular case of skin cancer images.
基于扩展的Chan和Vese模型的皮肤癌图像分割
近年来,癌症的自动检测越来越受到人们的关注。然而,种类繁多的癌症(肺癌、乳腺癌、脑癌、皮肤癌等)使这种疾病的检测变得复杂。针对每种癌症的适应性方法是实现这一目标的唯一反应。兴趣区域分割是区分图像中可疑部分和非可疑部分的第一个主要步骤。在这项具体工作中,我们重点研究了一种基于全变分方法的分割方法。我们提出了一种概括的Chan和Vese (CV)模型理论,并将其应用于皮肤癌图像的具体情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信