Usage of ensemble model and genetic algorithm in pipeline for feature selection from cancer microarray data

Sahu Barnali, Satchidananda Dehuri, A. Jagadev
{"title":"Usage of ensemble model and genetic algorithm in pipeline for feature selection from cancer microarray data","authors":"Sahu Barnali, Satchidananda Dehuri, A. Jagadev","doi":"10.1504/ijbra.2020.10031327","DOIUrl":null,"url":null,"abstract":"This paper proposes an ensemble of feature selection techniques with genetic algorithm (GA) in pipeline for selecting features from microarray data. The ensemble is a combination of filter and wrapper-based feature selection methods. In addition, GA in pipeline has been used for refinement of ensemble output to produce a non-local set of robust feature subset. An extensive computational experiment has been carried out on a prostate cancer dataset for validation of the method and comparison with group genetic algorithm (GGA). Finally, the resultant feature subsets of GA, GGA, and other constituents of the ensemble in standalone mode have been used for uncovering frequent patterns based on Apriori and FP-growth. The experimental study confirms that the proposed method gives classification accuracy of 100%, 98.34%, 98.02%, and 97% based on an ensemble of classifiers w. r. t. 5, 10, 15, and 20 features, respectively, vis-a-vis 92.34%, 90.34%, 86.54%, and 87.21% of GGA.","PeriodicalId":434900,"journal":{"name":"Int. J. Bioinform. Res. Appl.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bioinform. Res. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbra.2020.10031327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes an ensemble of feature selection techniques with genetic algorithm (GA) in pipeline for selecting features from microarray data. The ensemble is a combination of filter and wrapper-based feature selection methods. In addition, GA in pipeline has been used for refinement of ensemble output to produce a non-local set of robust feature subset. An extensive computational experiment has been carried out on a prostate cancer dataset for validation of the method and comparison with group genetic algorithm (GGA). Finally, the resultant feature subsets of GA, GGA, and other constituents of the ensemble in standalone mode have been used for uncovering frequent patterns based on Apriori and FP-growth. The experimental study confirms that the proposed method gives classification accuracy of 100%, 98.34%, 98.02%, and 97% based on an ensemble of classifiers w. r. t. 5, 10, 15, and 20 features, respectively, vis-a-vis 92.34%, 90.34%, 86.54%, and 87.21% of GGA.
集成模型和遗传算法在流水线中的应用于癌症微阵列数据的特征选择
本文提出了一种结合流水线遗传算法的特征选择技术,用于从微阵列数据中选择特征。该集成是基于过滤器和包装器的特征选择方法的组合。此外,利用管道遗传算法对集成输出进行细化,生成非局部鲁棒特征子集集。在一个前列腺癌数据集上进行了大量的计算实验,以验证该方法,并与群体遗传算法(GGA)进行了比较。最后,在独立模式下,GA、GGA和集成的其他组成部分的结果特征子集被用于发现基于Apriori和FP-growth的频繁模式。实验研究证实,基于分类器w. r. t. 5、10、15和20个特征的集合,本文方法的分类准确率分别为100%、98.34%、98.02%和97%,相对于GGA的准确率分别为92.34%、90.34%、86.54%和87.21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信