Storage Aware Resource Allocation for Grid Data Streaming Pipelines

Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu
{"title":"Storage Aware Resource Allocation for Grid Data Streaming Pipelines","authors":"Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu","doi":"10.1109/NAS.2008.24","DOIUrl":null,"url":null,"abstract":"Data streaming applications, usually composed with sequential/parallel tasks in a data pipeline form, bring new challenges to task scheduling and resource allocation in grid environments. Due to high volumes of data and relatively limit storage capability, resource allocation and data streaming have to be storage aware. In this paper, genetic algorithm (GA) is adopted for task scheduling of pipelines, based on on-line measurement and prediction with gray model (GM). On-demand data streaming is introduced to avoid data overflow using repertory strategies. Experimental results show that balance among task executions with on-demand data streaming is required to improve overall performance, avoid system bottlenecks and backlogs of intermediate data, and increase data throughput of pipelines as a whole.","PeriodicalId":153238,"journal":{"name":"2008 International Conference on Networking, Architecture, and Storage","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Networking, Architecture, and Storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAS.2008.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data streaming applications, usually composed with sequential/parallel tasks in a data pipeline form, bring new challenges to task scheduling and resource allocation in grid environments. Due to high volumes of data and relatively limit storage capability, resource allocation and data streaming have to be storage aware. In this paper, genetic algorithm (GA) is adopted for task scheduling of pipelines, based on on-line measurement and prediction with gray model (GM). On-demand data streaming is introduced to avoid data overflow using repertory strategies. Experimental results show that balance among task executions with on-demand data streaming is required to improve overall performance, avoid system bottlenecks and backlogs of intermediate data, and increase data throughput of pipelines as a whole.
网格数据流管道的存储感知资源分配
数据流应用通常由数据管道形式的顺序/并行任务组成,给网格环境下的任务调度和资源分配带来了新的挑战。由于大量的数据和相对有限的存储能力,资源分配和数据流必须具有存储意识。本文在灰色模型在线测量和预测的基础上,将遗传算法应用于管道的任务调度。为了避免数据溢出,引入了按需数据流。实验结果表明,任务执行与按需数据流之间的平衡需要提高整体性能,避免系统瓶颈和中间数据积压,并提高整个管道的数据吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信