Variable Length Joint Source-Channel Coding of Text Using Deep Neural Networks

Milind Rao, N. Farsad, A. Goldsmith
{"title":"Variable Length Joint Source-Channel Coding of Text Using Deep Neural Networks","authors":"Milind Rao, N. Farsad, A. Goldsmith","doi":"10.1109/SPAWC.2018.8445924","DOIUrl":null,"url":null,"abstract":"We consider joint source and channel coding of natural language over a noisy channel using deep learning. While the typical approach based on separate source and channel code design minimizes bit error rates, the proposed deep learning approach preserves semantic information of sentences. In particular, unlike previous work which used a fixed-length encoding per sentence, a variable-length neural network encoder is presented. The performance of this new architecture is compared to the one with fixed-length encoding per sentence. We show that the variable-length encoder has a lower word error rate compared with the fixed-length encoder as well as separate source and channel coding schemes across several different communication channels.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We consider joint source and channel coding of natural language over a noisy channel using deep learning. While the typical approach based on separate source and channel code design minimizes bit error rates, the proposed deep learning approach preserves semantic information of sentences. In particular, unlike previous work which used a fixed-length encoding per sentence, a variable-length neural network encoder is presented. The performance of this new architecture is compared to the one with fixed-length encoding per sentence. We show that the variable-length encoder has a lower word error rate compared with the fixed-length encoder as well as separate source and channel coding schemes across several different communication channels.
基于深度神经网络的文本变长联合源信道编码
我们考虑了使用深度学习的自然语言在噪声信道上的联合源和信道编码。典型的基于分离源信道码设计的方法最大限度地降低了误码率,而本文提出的深度学习方法保留了句子的语义信息。与以往使用固定长度的句子编码不同,本文提出了一种可变长度的神经网络编码器。将这种新架构的性能与每句固定长度编码的架构进行了比较。研究表明,与固定长度编码器相比,可变长度编码器具有较低的字错误率,并且可以跨多个不同的通信信道使用独立的源和信道编码方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信