Modified grasshopper optimisation algorithm

Rajani Kumari, Sandeep Kumar, A. Nayyar
{"title":"Modified grasshopper optimisation algorithm","authors":"Rajani Kumari, Sandeep Kumar, A. Nayyar","doi":"10.1145/3415088.3415092","DOIUrl":null,"url":null,"abstract":"The grasshopper optimization algorithm (GOA) mimics the foraging behavior of grasshopper insects. It is one of the youngest and widespread algorithms for optimization. In GOA exploration and exploitation depends on coefficient c used in position update process. So as to improve balancing in exploration and exploitation this paper introduced modified coefficient c for fine tuning these to contradictory process while searching for optimum solution. The new value of c is decided adaptively and stimulated by hyperbolic function. The anticipated algorithm is named as modified GOA (mGOA) and tested over a standard set of benchmark problems. Outcomes proves that mGOA outperformed considered algorithm for more than 90% problems.","PeriodicalId":274948,"journal":{"name":"Proceedings of the 2nd International Conference on Intelligent and Innovative Computing Applications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Intelligent and Innovative Computing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3415088.3415092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The grasshopper optimization algorithm (GOA) mimics the foraging behavior of grasshopper insects. It is one of the youngest and widespread algorithms for optimization. In GOA exploration and exploitation depends on coefficient c used in position update process. So as to improve balancing in exploration and exploitation this paper introduced modified coefficient c for fine tuning these to contradictory process while searching for optimum solution. The new value of c is decided adaptively and stimulated by hyperbolic function. The anticipated algorithm is named as modified GOA (mGOA) and tested over a standard set of benchmark problems. Outcomes proves that mGOA outperformed considered algorithm for more than 90% problems.
改进的蚱蜢优化算法
蝗虫优化算法(GOA)模拟了蝗虫昆虫的觅食行为。它是最年轻和最广泛的优化算法之一。在空区勘探开发中,位置更新过程中使用系数c。为了提高勘探开发中的平衡性,本文引入修正系数c对矛盾过程进行微调,寻找最优解。c的新值是自适应确定的,并由双曲函数刺激。预期的算法被命名为改进的GOA (mGOA),并在一组标准的基准问题上进行了测试。结果证明,在90%以上的问题上,mGOA优于考虑算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信