Detecção de Câncer Peniano em Imagens Histopatológicas usando Redes Neurais Convolucionais em Cascata

Filipe Correia Belfort, I. F. S. D. Silva, A. C. Silva, Anselmo Cardoso de Paiva
{"title":"Detecção de Câncer Peniano em Imagens Histopatológicas usando Redes Neurais Convolucionais em Cascata","authors":"Filipe Correia Belfort, I. F. S. D. Silva, A. C. Silva, Anselmo Cardoso de Paiva","doi":"10.5753/sbcas.2023.229942","DOIUrl":null,"url":null,"abstract":"O câncer peniano tem alta incidência em países em desenvolvimento, incluindo o Brasil, onde o estado do Maranhão apresenta a maior taxa mundial de ocorrência. Essa patologia, quando muito agravada, pode levar a uma cirurgia invasiva com consequências físicas e psicológicas, tornando importante diagnosticá-la precocemente. A análise histopatológica é um exame indicado para o diagnóstico, mas é demorado e complexo. Métodos computacionais, como as redes neurais convolucionais (CNNs), podem ajudar na obtenção de um diagnóstico mais rápido e preciso. Portanto, este trabalho propõe um método para a classificação do câncer peniano em imagens histopatológicas usando CNNs em cascata e o mecanismo Soft-Attention, que atribui mais peso às características relevantes das imagens. Experimentos foram feitos com uma base contendo 194 exemplares nas ampliações de 40× e 100×. Como resultado final, o método obtém 93% e 90% de acurácia, respectivamente, para a detecção do câncer nas ampliações de 40× e 100×.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

O câncer peniano tem alta incidência em países em desenvolvimento, incluindo o Brasil, onde o estado do Maranhão apresenta a maior taxa mundial de ocorrência. Essa patologia, quando muito agravada, pode levar a uma cirurgia invasiva com consequências físicas e psicológicas, tornando importante diagnosticá-la precocemente. A análise histopatológica é um exame indicado para o diagnóstico, mas é demorado e complexo. Métodos computacionais, como as redes neurais convolucionais (CNNs), podem ajudar na obtenção de um diagnóstico mais rápido e preciso. Portanto, este trabalho propõe um método para a classificação do câncer peniano em imagens histopatológicas usando CNNs em cascata e o mecanismo Soft-Attention, que atribui mais peso às características relevantes das imagens. Experimentos foram feitos com uma base contendo 194 exemplares nas ampliações de 40× e 100×. Como resultado final, o método obtém 93% e 90% de acurácia, respectivamente, para a detecção do câncer nas ampliações de 40× e 100×.
利用卷积神经网络级联检测组织病理学图像中的阴茎癌
阴茎癌在发展中国家发病率很高,包括巴西,maranhao州是世界上发病率最高的州。这种病理,当严重恶化时,可能导致侵入性手术,带来生理和心理后果,因此早期诊断很重要。组织病理学分析是一种诊断检查,但耗时且复杂。计算方法,如卷积神经网络(CNNs),可以帮助获得更快和更准确的诊断。因此,本研究提出了一种利用级联CNNs和软注意机制对组织病理学图像进行阴茎癌分类的方法,该方法更重视图像的相关特征。实验是在40×和100×放大的194个样本的基础上进行的。最终结果是,该方法在40×和100×放大倍数下检测癌症的准确率分别为93%和90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信