Multiple Chains Hidden Markov Models for Bivariate Dynamical Systems

Leopoldo Catania
{"title":"Multiple Chains Hidden Markov Models for Bivariate Dynamical Systems","authors":"Leopoldo Catania","doi":"10.2139/ssrn.3662346","DOIUrl":null,"url":null,"abstract":"We present a new modelling framework for the bi-variate hidden Markov model. The proposed specification is composed by five latent Markovian chains which drive the evolution of the parameters of a bi-variate Gaussian distribution. The maximum likelihood estimator is computed via an expectation conditional maximization algorithm with closed form conditional maximization steps, specifically developed for our model. Identification of model parameters, as well as consistency and asymptotic Normality of the maximum likelihood estimator are discussed. Finite sample properties of the estimator are investigated in an extensive simulation study. An empirical application with the bi-variate series of US stocks and bond returns illustrates the benefits of the new specification with respect to the standard hidden Markov model.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3662346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new modelling framework for the bi-variate hidden Markov model. The proposed specification is composed by five latent Markovian chains which drive the evolution of the parameters of a bi-variate Gaussian distribution. The maximum likelihood estimator is computed via an expectation conditional maximization algorithm with closed form conditional maximization steps, specifically developed for our model. Identification of model parameters, as well as consistency and asymptotic Normality of the maximum likelihood estimator are discussed. Finite sample properties of the estimator are investigated in an extensive simulation study. An empirical application with the bi-variate series of US stocks and bond returns illustrates the benefits of the new specification with respect to the standard hidden Markov model.
二元动力系统的多链隐马尔可夫模型
提出了一种新的双变量隐马尔可夫模型的建模框架。提出的规范由五个潜在的马尔可夫链组成,它们驱动双变量高斯分布参数的演化。最大似然估计量是通过期望条件最大化算法计算的,该算法具有封闭形式的条件最大化步骤,专门为我们的模型开发。讨论了模型参数的辨识,极大似然估计量的相合性和渐近正态性。对该估计器的有限样本性质进行了广泛的仿真研究。美国股票和债券收益的双变量序列的经验应用说明了新规范相对于标准隐马尔可夫模型的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信