Choosing data sets that optimize the determinant of the Fisher information matrix

W. Poston, J. Solka
{"title":"Choosing data sets that optimize the determinant of the Fisher information matrix","authors":"W. Poston, J. Solka","doi":"10.1109/WITS.1994.513902","DOIUrl":null,"url":null,"abstract":"In many situations it is desirable to operate on a subset of the data only. These can arise in the areas of experimental design, robust estimation of multivariate location, and density estimation. The paper describes a method of subset selection that optimizes the determinant of the Fisher information matrix (FIM) which is called the effective independence distribution (EID) method. It provides some motivation that justifies the use of the EID, and the problem of finding the subset of points to use in the estimation of the minimum volume ellipsoid (MVE) is examined as an application of interest.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In many situations it is desirable to operate on a subset of the data only. These can arise in the areas of experimental design, robust estimation of multivariate location, and density estimation. The paper describes a method of subset selection that optimizes the determinant of the Fisher information matrix (FIM) which is called the effective independence distribution (EID) method. It provides some motivation that justifies the use of the EID, and the problem of finding the subset of points to use in the estimation of the minimum volume ellipsoid (MVE) is examined as an application of interest.
选择优化费雪信息矩阵行列式的数据集
在许多情况下,只对数据的一个子集进行操作是可取的。这些可能出现在实验设计、多变量位置的稳健估计和密度估计等领域。本文提出了一种优化Fisher信息矩阵(FIM)行列式的子集选择方法,即有效独立分布(EID)方法。它提供了一些动机来证明使用EID是合理的,并且找到用于估计最小体积椭球体(MVE)的点子集的问题作为感兴趣的应用进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信