S. Yeh, Shun-Min Chang, Shuya Chen, Wu-Yuin Hwang, T. Huang, Te-Lu Tsai
{"title":"A lower limb fracture postoperative-guided interactive rehabilitation training system and its effectiveness analysis","authors":"S. Yeh, Shun-Min Chang, Shuya Chen, Wu-Yuin Hwang, T. Huang, Te-Lu Tsai","doi":"10.1109/HealthCom.2012.6379378","DOIUrl":null,"url":null,"abstract":"Prior studies show that active-motion early after a fracture surgery can effectively reduce the tissue viscosity. However, due to the postoperative pain and unawareness of the postoperative limitations, a patient prefers to take medication to alleviate pain while complicated rehabilitation exercises can only be implemented under the limited intervention of a therapist, resulting in the patient's lack of interactive feedback on a daily basis and a failure of self-motions to miss the timing of rehabilitation. This study is intended to develop a lower limb fracture postoperative-guided interactive rehabilitation training system for the hip, knee and ankle joints, and establish a method of motion analysis and a method of motion performance assessment in conjunction with the wireless sensor technology and animation techniques, providing an objective assessment from the caregiver and learning the patient's rehabilitation status with a simple and easy recording means. Additionally, with the design of interactive feedback, the improved postoperative rehabilitations are tried to increase the participant's interest in self-management of health and facilitate to keep tracking the rehabilitation information. The medical evidences show that a guided rehabilitation system can enhance the patient's motive and willingness to be committed to a rehabilitation training as well as increase Quality and Amount of the exercise activity during the training process.","PeriodicalId":138952,"journal":{"name":"2012 IEEE 14th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 14th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2012.6379378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Prior studies show that active-motion early after a fracture surgery can effectively reduce the tissue viscosity. However, due to the postoperative pain and unawareness of the postoperative limitations, a patient prefers to take medication to alleviate pain while complicated rehabilitation exercises can only be implemented under the limited intervention of a therapist, resulting in the patient's lack of interactive feedback on a daily basis and a failure of self-motions to miss the timing of rehabilitation. This study is intended to develop a lower limb fracture postoperative-guided interactive rehabilitation training system for the hip, knee and ankle joints, and establish a method of motion analysis and a method of motion performance assessment in conjunction with the wireless sensor technology and animation techniques, providing an objective assessment from the caregiver and learning the patient's rehabilitation status with a simple and easy recording means. Additionally, with the design of interactive feedback, the improved postoperative rehabilitations are tried to increase the participant's interest in self-management of health and facilitate to keep tracking the rehabilitation information. The medical evidences show that a guided rehabilitation system can enhance the patient's motive and willingness to be committed to a rehabilitation training as well as increase Quality and Amount of the exercise activity during the training process.