Scaling and Selecting GPU Methods for All Pairs Shortest Paths (APSP) Computations

Yang Xia, Peng Jiang, G. Agrawal, R. Ramnath
{"title":"Scaling and Selecting GPU Methods for All Pairs Shortest Paths (APSP) Computations","authors":"Yang Xia, Peng Jiang, G. Agrawal, R. Ramnath","doi":"10.1109/ipdps53621.2022.00027","DOIUrl":null,"url":null,"abstract":"All Pairs Shortest Path (APSP) is one of the graph problems where the output size is significantly larger than the input size. This paper examines the issues in scaling GPU implementations for this problem beyond the memory limits. Because the existing (in-core) methods offer a complex trade-off between the overall computation complexity and the available parallelism, choosing the best out-of-core version for a given matrix is challenging. We develop three efficient out-of-core implementations, which are based on the blocked Floyd-Warshall algorithm, Johnson's algorithm, and the boundary algorithm, respectively. Next, we develop a methodology to select the best implementation for a given graph. Experimental results show that compared with an efficient multi-core APSP implementation, the out-of-core version achieves speedups of 8.22 to 12.40 for graphs with a small separator, and speedups of 2.23 to 2.79 for other sparse graphs, and our models can select the best implementation in most cases.","PeriodicalId":321801,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipdps53621.2022.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

All Pairs Shortest Path (APSP) is one of the graph problems where the output size is significantly larger than the input size. This paper examines the issues in scaling GPU implementations for this problem beyond the memory limits. Because the existing (in-core) methods offer a complex trade-off between the overall computation complexity and the available parallelism, choosing the best out-of-core version for a given matrix is challenging. We develop three efficient out-of-core implementations, which are based on the blocked Floyd-Warshall algorithm, Johnson's algorithm, and the boundary algorithm, respectively. Next, we develop a methodology to select the best implementation for a given graph. Experimental results show that compared with an efficient multi-core APSP implementation, the out-of-core version achieves speedups of 8.22 to 12.40 for graphs with a small separator, and speedups of 2.23 to 2.79 for other sparse graphs, and our models can select the best implementation in most cases.
全对最短路径(APSP)计算的缩放和选择GPU方法
全对最短路径(APSP)是输出大小明显大于输入大小的图问题之一。本文研究了在超出内存限制的情况下扩展GPU实现的问题。由于现有的(核内)方法在总体计算复杂性和可用的并行性之间提供了复杂的权衡,因此为给定矩阵选择最佳的核外版本具有挑战性。我们开发了三种高效的核外实现,它们分别基于阻塞Floyd-Warshall算法、Johnson算法和边界算法。接下来,我们开发了一种方法来选择给定图的最佳实现。实验结果表明,与高效的多核APSP实现相比,外核版本对于带有小分隔符的图的加速提高了8.22 ~ 12.40,对于其他稀疏图的加速提高了2.23 ~ 2.79,我们的模型在大多数情况下都可以选择最佳的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信