Automatic Recovery Using Bounded Partially Observable Markov Decision Processes

Kaustubh R. Joshi, W. Sanders, M. Hiltunen, R. Schlichting
{"title":"Automatic Recovery Using Bounded Partially Observable Markov Decision Processes","authors":"Kaustubh R. Joshi, W. Sanders, M. Hiltunen, R. Schlichting","doi":"10.1109/DSN.2006.16","DOIUrl":null,"url":null,"abstract":"This paper provides a technique, based on partially observable Markov decision processes (POMDPs), for building automatic recovery controllers to guide distributed system recovery in a way that provides provable assurances on the quality of the generated recovery actions even when the diagnostic information may be imprecise. Lower bounds on the cost of recovery are introduced and proved, and it is shown how the characteristics of the recovery process can be used to ensure that the lower bounds converge even on undiscounted models. The bounds used in an appropriate online controller provide it with provable termination properties. Simulation-based experimental results on a realistic e-commerce system demonstrate that the proposed bounds can be improved iteratively, and the resulting controller convincingly outperforms a controller that uses heuristics instead of bounds","PeriodicalId":228470,"journal":{"name":"International Conference on Dependable Systems and Networks (DSN'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Dependable Systems and Networks (DSN'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2006.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper provides a technique, based on partially observable Markov decision processes (POMDPs), for building automatic recovery controllers to guide distributed system recovery in a way that provides provable assurances on the quality of the generated recovery actions even when the diagnostic information may be imprecise. Lower bounds on the cost of recovery are introduced and proved, and it is shown how the characteristics of the recovery process can be used to ensure that the lower bounds converge even on undiscounted models. The bounds used in an appropriate online controller provide it with provable termination properties. Simulation-based experimental results on a realistic e-commerce system demonstrate that the proposed bounds can be improved iteratively, and the resulting controller convincingly outperforms a controller that uses heuristics instead of bounds
基于有界部分可观察马尔可夫决策过程的自动恢复
本文提供了一种基于部分可观察马尔可夫决策过程(pomdp)的技术,用于构建自动恢复控制器,以指导分布式系统恢复,即使在诊断信息可能不精确的情况下,也能对生成的恢复动作的质量提供可证明的保证。引入并证明了恢复成本的下界,并展示了如何利用恢复过程的特征来保证下界即使在未贴现模型下也收敛。在适当的在线控制器中使用的边界为其提供可证明的终止属性。基于仿真的电子商务系统实验结果表明,所提出的边界可以迭代改进,并且所得到的控制器令人信服地优于使用启发式而不是使用边界的控制器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信