GATuner: Tuning Schema Matching Systems Using Genetic Algorithms

Yuting Feng, Lei Zhao, Jiwen Yang
{"title":"GATuner: Tuning Schema Matching Systems Using Genetic Algorithms","authors":"Yuting Feng, Lei Zhao, Jiwen Yang","doi":"10.1109/DBTA.2010.5659029","DOIUrl":null,"url":null,"abstract":"Most recent schema matching systems combine multiple components, each of which employs a particular matching technique with several knobs. The multi-component nature has brought tuning problems for domain users. In this paper, we present GATuner, an approach to automatically tune schema matching systems using genetic algorithms. We match a given schema S against generated scenarios, for which the ground truth matches are known, and find a configuration that effectively improves the performance of matching S against real schemas. To search the huge space of configuration candidates efficiently, we adopt genetic algorithms during the tuning process. Experiments over four real-world domains with two main matching systems demonstrate that our approach provides more qualified matches over different domains.","PeriodicalId":320509,"journal":{"name":"2010 2nd International Workshop on Database Technology and Applications","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Database Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBTA.2010.5659029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Most recent schema matching systems combine multiple components, each of which employs a particular matching technique with several knobs. The multi-component nature has brought tuning problems for domain users. In this paper, we present GATuner, an approach to automatically tune schema matching systems using genetic algorithms. We match a given schema S against generated scenarios, for which the ground truth matches are known, and find a configuration that effectively improves the performance of matching S against real schemas. To search the huge space of configuration candidates efficiently, we adopt genetic algorithms during the tuning process. Experiments over four real-world domains with two main matching systems demonstrate that our approach provides more qualified matches over different domains.
GATuner:使用遗传算法调整模式匹配系统
大多数最新的模式匹配系统都结合了多个组件,每个组件都使用带有几个旋钮的特定匹配技术。多组件的特性给域用户带来了调优问题。本文提出了一种利用遗传算法对模式匹配系统进行自动调优的方法GATuner。我们将给定的模式S与生成的场景进行匹配,其中基本真值匹配是已知的,并找到一种配置,可以有效地提高匹配S与真实模式的性能。在调优过程中,为了有效地搜索巨大的候选结构空间,我们采用了遗传算法。在四个现实世界领域中使用两个主要匹配系统的实验表明,我们的方法在不同的领域中提供了更合格的匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信