Efficient Influence Maximization Under Network Uncertainty

S. Eshghi, S. Maghsudi, Valerio Restocchi, S. Stein, L. Tassiulas
{"title":"Efficient Influence Maximization Under Network Uncertainty","authors":"S. Eshghi, S. Maghsudi, Valerio Restocchi, S. Stein, L. Tassiulas","doi":"10.1109/INFCOMW.2019.8845088","DOIUrl":null,"url":null,"abstract":"We consider the influence maximization (IM) problem in a partially visible social network. The goal is to design a decision-making framework for an autonomous agent to select a limited set of influential seed nodes to spread a message as widely as possible across the network. We consider the realistic case where only a partial section of the network is visible to the agent, while the rest is one of a finite set of known structures, each with a given realization probability. We show that solving the IM problem in this setting is NP-hard, and we provide analytical guarantees for the performance of a novel computationally-efficient seed-selection approximation algorithm for the agent. In empirical experiments on real-world social networks, we demonstrate the efficiency of our scheme and show that it outperforms state-of-the-art approaches that do not model the uncertainty.","PeriodicalId":321862,"journal":{"name":"IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2019.8845088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We consider the influence maximization (IM) problem in a partially visible social network. The goal is to design a decision-making framework for an autonomous agent to select a limited set of influential seed nodes to spread a message as widely as possible across the network. We consider the realistic case where only a partial section of the network is visible to the agent, while the rest is one of a finite set of known structures, each with a given realization probability. We show that solving the IM problem in this setting is NP-hard, and we provide analytical guarantees for the performance of a novel computationally-efficient seed-selection approximation algorithm for the agent. In empirical experiments on real-world social networks, we demonstrate the efficiency of our scheme and show that it outperforms state-of-the-art approaches that do not model the uncertainty.
网络不确定性下的有效影响最大化
研究了部分可见社会网络中的影响最大化问题。目标是为自主代理设计一个决策框架,以选择一组有限的有影响力的种子节点,在网络中尽可能广泛地传播消息。我们考虑的现实情况是,只有网络的一部分对智能体可见,而其余部分是已知结构的有限集合之一,每个结构都具有给定的实现概率。我们证明了在这种情况下解决IM问题是np困难的,并且我们为一种新的计算效率高的代理种子选择近似算法的性能提供了分析保证。在现实社会网络的经验实验中,我们证明了我们方案的效率,并表明它优于不模拟不确定性的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信