Parameter Identification Algorithm for Grid-Connected Photovoltaic Power Generation System Based on Extended Kalman Filter

Chun Li, Haifeng Shi, Keding Wang, Jun Shen, Di Zheng
{"title":"Parameter Identification Algorithm for Grid-Connected Photovoltaic Power Generation System Based on Extended Kalman Filter","authors":"Chun Li, Haifeng Shi, Keding Wang, Jun Shen, Di Zheng","doi":"10.1109/ICPST56889.2023.10165311","DOIUrl":null,"url":null,"abstract":"Due to the rapid advancement of renewable energy sources, photovoltaic power generation systems (PVPGSs) have become increasingly prevalent in modern power systems. To mitigate potential degradation of system characteristics resulting from the proliferation of PVPGSs, power systems are imposing stricter regulation requirements on PVPGSs. However, the existing control methods for PVPGSs typically rely on prior knowledge of inverter control parameters, which are often not readily available or accessible. Inaccurate control parameters may constrain the efficacy of these control methods. Therefore, this paper presents an extended Kalman filter (EKF) based parameter identification algorithm for grid-connected PVPGSs to efficiently and accurately identify system parameters under disturbances. The mathematical model of the PVPGS is initially analyzed, followed by an analysis of the EKF algorithm and the proposal of an EKF-based PVPGS parameter identification method. Case studies indicate that the maximum errors of parameter identification results such as DC-side capacitance, proportion coefficient, and integration coefficient of PI regulator are less than 1.16% in different scenarios.","PeriodicalId":231392,"journal":{"name":"2023 IEEE International Conference on Power Science and Technology (ICPST)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Power Science and Technology (ICPST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPST56889.2023.10165311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the rapid advancement of renewable energy sources, photovoltaic power generation systems (PVPGSs) have become increasingly prevalent in modern power systems. To mitigate potential degradation of system characteristics resulting from the proliferation of PVPGSs, power systems are imposing stricter regulation requirements on PVPGSs. However, the existing control methods for PVPGSs typically rely on prior knowledge of inverter control parameters, which are often not readily available or accessible. Inaccurate control parameters may constrain the efficacy of these control methods. Therefore, this paper presents an extended Kalman filter (EKF) based parameter identification algorithm for grid-connected PVPGSs to efficiently and accurately identify system parameters under disturbances. The mathematical model of the PVPGS is initially analyzed, followed by an analysis of the EKF algorithm and the proposal of an EKF-based PVPGS parameter identification method. Case studies indicate that the maximum errors of parameter identification results such as DC-side capacitance, proportion coefficient, and integration coefficient of PI regulator are less than 1.16% in different scenarios.
基于扩展卡尔曼滤波的并网光伏发电系统参数辨识算法
由于可再生能源的快速发展,光伏发电系统在现代电力系统中越来越普遍。为了减轻由于pvpgs的扩散而导致的系统特性的潜在退化,电力系统对pvpgs施加了更严格的监管要求。然而,现有的pvpgs控制方法通常依赖于逆变器控制参数的先验知识,这些参数通常不容易获得或访问。不准确的控制参数可能会限制这些控制方法的有效性。为此,本文提出了一种基于扩展卡尔曼滤波(EKF)的并网pvpgs参数识别算法,以有效准确地识别扰动下的系统参数。首先分析了PVPGS的数学模型,然后分析了EKF算法,提出了一种基于EKF的PVPGS参数辨识方法。实例研究表明,在不同场景下,PI稳压器直流侧电容、比例系数、积分系数等参数辨识结果的最大误差均小于1.16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信