Half-Plane Voronoi Diagram

Chenglin Fan, Jun Luo, Jinfei Liu, Yinfeng Xu
{"title":"Half-Plane Voronoi Diagram","authors":"Chenglin Fan, Jun Luo, Jinfei Liu, Yinfeng Xu","doi":"10.1109/ISVD.2011.25","DOIUrl":null,"url":null,"abstract":"In normal Voronoi diagram, each site is able to see all points in the plane. In this paper, we study the problem such that each site is only able to see half-plane and construct the so-called Half-plane Voronoi Diagram (HPVD). We show that the half-plane Voronoi cell of each site is not necessary convex and it could consist of many disjoint regions. We prove that the complexity of the HPVD of n sites is $O(n^2)$. Then we give an algorithm of $O(n\\log n)$ time and $O(n)$ space to construct HPVD such that the boundary lines of all half-planes are parallel and the visible half-planes are in the same side of the corresponding boundary lines. For the parallel boundary lines where the visible half-planes could be in either side of the corresponding boundary lines, we give an algorithm of $O(n^2)$ time and $O(n^2)$ space to construct HPVD.","PeriodicalId":152151,"journal":{"name":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","volume":"156 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2011.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In normal Voronoi diagram, each site is able to see all points in the plane. In this paper, we study the problem such that each site is only able to see half-plane and construct the so-called Half-plane Voronoi Diagram (HPVD). We show that the half-plane Voronoi cell of each site is not necessary convex and it could consist of many disjoint regions. We prove that the complexity of the HPVD of n sites is $O(n^2)$. Then we give an algorithm of $O(n\log n)$ time and $O(n)$ space to construct HPVD such that the boundary lines of all half-planes are parallel and the visible half-planes are in the same side of the corresponding boundary lines. For the parallel boundary lines where the visible half-planes could be in either side of the corresponding boundary lines, we give an algorithm of $O(n^2)$ time and $O(n^2)$ space to construct HPVD.
半平面Voronoi图
在正常的Voronoi图中,每个站点都可以看到平面上的所有点。在本文中,我们研究了每个点只能看到半平面的问题,并构造了所谓的半平面Voronoi图(HPVD)。我们发现,每个位点的半平面Voronoi细胞不一定是凸的,它可以由许多不相交的区域组成。证明了n个点的HPVD复杂度为O(n^2)$。然后,我们给出了$O(n\log n)$时间$O(n\log n)$空间$O(n)$构造HPVD的算法,使得所有半平面的边界线是平行的,可见的半平面在相应边界线的同一侧。对于可见半平面可位于相应边界线两侧的平行边界线,给出了$O(n^2)$时间和$O(n^2)$空间的构造HPVD算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信