An Ontology Term Extracting Method Based on Latent Dirichlet Allocation

Y. Jing, Wang Junli, Zhao Xiaodong
{"title":"An Ontology Term Extracting Method Based on Latent Dirichlet Allocation","authors":"Y. Jing, Wang Junli, Zhao Xiaodong","doi":"10.1109/MINES.2012.71","DOIUrl":null,"url":null,"abstract":"Ontology plays an important part on Semantic Web, Information Retrieval, and Intelligent Information Integration etc. Ontology learning gets widely studied due to many problems in totally manual ontology construction. Term extraction influences many respects of ontology learning as it's the basis of ontology learning hierarchical structure. This paper mines topics of the corpus based on Latent Dirichlet Allocation (LDA) which uses Variational Inference and Expectation-Maximization (EM) Algorithm to estimate model parameters. With the help of irrelevant vocabulary, the paper provides better experimental results which show that the distribution of topics on terms reveals latent semantic features of the corpus and relevance among words.","PeriodicalId":208089,"journal":{"name":"2012 Fourth International Conference on Multimedia Information Networking and Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Multimedia Information Networking and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MINES.2012.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Ontology plays an important part on Semantic Web, Information Retrieval, and Intelligent Information Integration etc. Ontology learning gets widely studied due to many problems in totally manual ontology construction. Term extraction influences many respects of ontology learning as it's the basis of ontology learning hierarchical structure. This paper mines topics of the corpus based on Latent Dirichlet Allocation (LDA) which uses Variational Inference and Expectation-Maximization (EM) Algorithm to estimate model parameters. With the help of irrelevant vocabulary, the paper provides better experimental results which show that the distribution of topics on terms reveals latent semantic features of the corpus and relevance among words.
一种基于潜在狄利克雷分配的本体术语提取方法
本体在语义网、信息检索、智能信息集成等领域发挥着重要作用。由于纯手工构建本体存在诸多问题,本体学习得到了广泛的研究。术语抽取是本体学习层次结构的基础,影响着本体学习的许多方面。本文基于潜狄利克雷分配(Latent Dirichlet Allocation, LDA)方法对语料库进行主题挖掘,该方法利用变分推理和期望最大化(Expectation-Maximization, EM)算法估计模型参数。在不相关词汇的帮助下,本文提供了更好的实验结果,表明主题在术语上的分布揭示了语料库的潜在语义特征和词之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信