K. Shreve, L. C. Dinetta, J. Cotter, J. Bower, T. R. Ruffins, A. Barnett
{"title":"Initial results for the silicon monolithically interconnected solar cell product","authors":"K. Shreve, L. C. Dinetta, J. Cotter, J. Bower, T. R. Ruffins, A. Barnett","doi":"10.1109/PVSC.1996.564216","DOIUrl":null,"url":null,"abstract":"This technology is based on AstroPower's electrostatic bonding and silicon solar cell processing techniques. Electrostatic bonding allows silicon wafers to be permanently attached to a thermally matched glass superstrate and processed to form the monolithically interconnected devices. These devices can be tailored for space and terrestrial applications. The costs of the monolithic interconnection compare favorably to labor intensive, conventionally strung solar cell arrays. Voltage and current outputs can be varied without varying the number of fabrication steps. Prototypes have demonstrated efficiencies greater than 11%. The monolithic approach has a number of inherent advantages for space and terrestrial photovoltaic products.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1996.564216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This technology is based on AstroPower's electrostatic bonding and silicon solar cell processing techniques. Electrostatic bonding allows silicon wafers to be permanently attached to a thermally matched glass superstrate and processed to form the monolithically interconnected devices. These devices can be tailored for space and terrestrial applications. The costs of the monolithic interconnection compare favorably to labor intensive, conventionally strung solar cell arrays. Voltage and current outputs can be varied without varying the number of fabrication steps. Prototypes have demonstrated efficiencies greater than 11%. The monolithic approach has a number of inherent advantages for space and terrestrial photovoltaic products.