M. Wilson, I. Timoshkin, M. Given, S. Macgregor, M. Sinclair, K. Thomas, J. Lehr
{"title":"Effect of electrode geometry and rate of voltage rise on streamer propagation in mineral oil","authors":"M. Wilson, I. Timoshkin, M. Given, S. Macgregor, M. Sinclair, K. Thomas, J. Lehr","doi":"10.1109/ICDL.2011.6015480","DOIUrl":null,"url":null,"abstract":"Experimental data on the propagation of streamers in mineral oil is important for the design of high-voltage systems in the power and pulsed-power industries. In the present study, pre-breakdown delay times were measured for plane-parallel electrodes, and for two types of non-uniform electrode arrangement. For each geometry, the breakdown characteristics were determined for impulses of rise-time 100 ns, and also rise-time 1 µs. The maximum applied voltage magnitude was 400 kV, giving a maximum dV/dt of 4 kV/ns. For the non-uniform geometries with inter-electrode gap length of 8.5 mm, the time to breakdown was 2.5–3 times longer for impulses of rise-time 1 µs than for 100 ns rise-time. The time-to-breakdown data suggest that streamer propagation velocity increases with higher values of dV/dt. For example, the estimated propagation velocity for pin-plane geometry with a 1 µs rise-time is 10–12 km/s. At 100 ns rise-time for the same electrode geometry, the average propagation velocity exceeds 40 km/s. The results presented are intended to provide reference data for designers of oil-immersed high-voltage systems in both the power and pulsed-power industries.","PeriodicalId":364451,"journal":{"name":"2011 IEEE International Conference on Dielectric Liquids","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Dielectric Liquids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2011.6015480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Experimental data on the propagation of streamers in mineral oil is important for the design of high-voltage systems in the power and pulsed-power industries. In the present study, pre-breakdown delay times were measured for plane-parallel electrodes, and for two types of non-uniform electrode arrangement. For each geometry, the breakdown characteristics were determined for impulses of rise-time 100 ns, and also rise-time 1 µs. The maximum applied voltage magnitude was 400 kV, giving a maximum dV/dt of 4 kV/ns. For the non-uniform geometries with inter-electrode gap length of 8.5 mm, the time to breakdown was 2.5–3 times longer for impulses of rise-time 1 µs than for 100 ns rise-time. The time-to-breakdown data suggest that streamer propagation velocity increases with higher values of dV/dt. For example, the estimated propagation velocity for pin-plane geometry with a 1 µs rise-time is 10–12 km/s. At 100 ns rise-time for the same electrode geometry, the average propagation velocity exceeds 40 km/s. The results presented are intended to provide reference data for designers of oil-immersed high-voltage systems in both the power and pulsed-power industries.