Expression, pose and occlusion resistant 3D facial landmarking

H. Dibeklioğlu, A. A. Salah, L. Akarun
{"title":"Expression, pose and occlusion resistant 3D facial landmarking","authors":"H. Dibeklioğlu, A. A. Salah, L. Akarun","doi":"10.1109/SIU.2009.5136436","DOIUrl":null,"url":null,"abstract":"This paper contrasts two approaches to facial landmarking in 3D. The first approach is statistical in nature, and is based on modeling the shape of each feature with Gaussian mixtures. The advantage of this approach is the uniform treatment of landmarks. The second approach is a hybrid method to find the nose tip, which does not require learning, and is robust under adverse conditions. We demonstrate the accuracy and cross-database performance of these methods on FRGC and Bosphorus databases.","PeriodicalId":219938,"journal":{"name":"2009 IEEE 17th Signal Processing and Communications Applications Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 17th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2009.5136436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper contrasts two approaches to facial landmarking in 3D. The first approach is statistical in nature, and is based on modeling the shape of each feature with Gaussian mixtures. The advantage of this approach is the uniform treatment of landmarks. The second approach is a hybrid method to find the nose tip, which does not require learning, and is robust under adverse conditions. We demonstrate the accuracy and cross-database performance of these methods on FRGC and Bosphorus databases.
抗表情、姿态和遮挡的3D面部标记
本文对比了两种三维人脸标记方法。第一种方法本质上是统计方法,它基于用高斯混合对每个特征的形状建模。这种方法的优点是对地标的统一处理。第二种方法是一种寻找鼻尖的混合方法,该方法不需要学习,并且在不利条件下具有鲁棒性。我们在FRGC和Bosphorus数据库上验证了这些方法的准确性和跨数据库性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信