{"title":"Crystal Structure and Solid-State Properties of Metal Complexes of the Schiff Base Ligands Derived from Diacetylmonoxime: A Brief Review","authors":"P. Mandal, U. Das, K. Dey, Saikat Sarkar","doi":"10.5772/intechopen.90171","DOIUrl":null,"url":null,"abstract":"The fabulous advancement of a large section of modern coordination chemistry depends upon different kinds of strategically designed and functionally tuned ligand systems; Schiff base ligands play a pivotal role among them. Such Schiff bases become more motivating when they are designed to be synthesized using very simple organic molecules. This paper reviews our work on a family of three functionally different types of Schiff base ligands, derived from diacetylmonoxime, which have been employed to synthesize mononuclear metal complexes with various binding modes of ligands and topologies around the metal centers. Such Schiff base ligands have been synthesized by reacting diacetylmonoxime with diethylenetriamine, 1,3-diaminopropane-2-ol, and morpholine N-thiohydrazide. The synthesized Schiff bases and the metal complexes of such “ privileged ligands ” show many interesting supramolecular coordination architectures involving different weak forces, e.g., H-bonding, C – H (cid:1)(cid:1)(cid:1) π interactions, etc.","PeriodicalId":389527,"journal":{"name":"Stability and Applications of Coordination Compounds","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stability and Applications of Coordination Compounds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.90171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The fabulous advancement of a large section of modern coordination chemistry depends upon different kinds of strategically designed and functionally tuned ligand systems; Schiff base ligands play a pivotal role among them. Such Schiff bases become more motivating when they are designed to be synthesized using very simple organic molecules. This paper reviews our work on a family of three functionally different types of Schiff base ligands, derived from diacetylmonoxime, which have been employed to synthesize mononuclear metal complexes with various binding modes of ligands and topologies around the metal centers. Such Schiff base ligands have been synthesized by reacting diacetylmonoxime with diethylenetriamine, 1,3-diaminopropane-2-ol, and morpholine N-thiohydrazide. The synthesized Schiff bases and the metal complexes of such “ privileged ligands ” show many interesting supramolecular coordination architectures involving different weak forces, e.g., H-bonding, C – H (cid:1)(cid:1)(cid:1) π interactions, etc.