Mapping Large-Scale DNNs on Asymmetric FPGAs: (Abstract Only)

Wentai Zhang, Jiaxi Zhang, Minghua Shen, Nong Xiao, Guojie Luo
{"title":"Mapping Large-Scale DNNs on Asymmetric FPGAs: (Abstract Only)","authors":"Wentai Zhang, Jiaxi Zhang, Minghua Shen, Nong Xiao, Guojie Luo","doi":"10.1145/3174243.3174982","DOIUrl":null,"url":null,"abstract":"FPGAs are very attractive to accelerate the deep neural networks (DNNs). While single-FPGA can provide good performance for small-scale DNNs, support for large-scale DNNs is very limited due to they require higher resource demand. In this paper, we propose an efficient mapping approach for accelerating large-scale DNNs on an asymmetric multi-FPGA architecture. Relative to the state-of-the-art single-FPGA resource reuse for large-scale DNNs, we consider multi-FPGA fashion to strive for higher performance. In this fashion, the neural network mapping problem can be formulated as a resource allocation problem, and a dynamic programming-based partitioning is designed to solve this problem optimally. Notice that the network topology and communication bandwidth of multiple FPGAs are always used to guide the partitioning to boost the performance while satisfying the constraints of resource-performance trade-off in a single FPGA. Experimental results using the large-scale ResNet-152 demonstrate that our approach deploys sixteen FPGAs to provide an advantage of 16.4x GOPS over the state-of-the-art work.","PeriodicalId":164936,"journal":{"name":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3174243.3174982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

FPGAs are very attractive to accelerate the deep neural networks (DNNs). While single-FPGA can provide good performance for small-scale DNNs, support for large-scale DNNs is very limited due to they require higher resource demand. In this paper, we propose an efficient mapping approach for accelerating large-scale DNNs on an asymmetric multi-FPGA architecture. Relative to the state-of-the-art single-FPGA resource reuse for large-scale DNNs, we consider multi-FPGA fashion to strive for higher performance. In this fashion, the neural network mapping problem can be formulated as a resource allocation problem, and a dynamic programming-based partitioning is designed to solve this problem optimally. Notice that the network topology and communication bandwidth of multiple FPGAs are always used to guide the partitioning to boost the performance while satisfying the constraints of resource-performance trade-off in a single FPGA. Experimental results using the large-scale ResNet-152 demonstrate that our approach deploys sixteen FPGAs to provide an advantage of 16.4x GOPS over the state-of-the-art work.
非对称fpga上大规模dnn的映射(摘要)
fpga在加速深度神经网络(dnn)方面具有很大的吸引力。虽然单fpga可以为小规模dnn提供良好的性能,但由于大规模dnn需要更高的资源需求,因此对大规模dnn的支持非常有限。在本文中,我们提出了一种在非对称多fpga架构上加速大规模dnn的有效映射方法。相对于大规模深度神经网络最先进的单fpga资源重用,我们考虑多fpga方式以争取更高的性能。在这种方式下,神经网络映射问题可以被表述为一个资源分配问题,并设计了一个基于动态规划的分区来最优地解决这个问题。注意,总是使用多个FPGA的网络拓扑和通信带宽来指导分区,以提高性能,同时满足单个FPGA中资源性能权衡的约束。使用大规模ResNet-152的实验结果表明,我们的方法部署了16个fpga,比最先进的工作提供16.4倍的GOPS优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信