Experimentally-Infused Active System Optimization Framework: Theoretical Convergence Analysis and Airborne Wind Energy Case Study

N. Deodhar, C. Vermillion
{"title":"Experimentally-Infused Active System Optimization Framework: Theoretical Convergence Analysis and Airborne Wind Energy Case Study","authors":"N. Deodhar, C. Vermillion","doi":"10.1115/DETC2018-85305","DOIUrl":null,"url":null,"abstract":"This research presents a convergence analysis for an iterative framework for optimizing plant and controller parameters for active systems. The optimization strategy fuses expensive yet valuable experiments with less accurate yet cheaper simulations. The numerical model is improved at each iteration through a cumulative correction law, using an optimally designed set of experiments. The iterative framework reduces the feasible design space between iterations, ultimately yielding convergence to a small design space that contains the optimum. This paper presents the derivation of an asymptotic upper bound on the difference between the corrected numerical model and true system response. Furthermore, convergence of the numerical model to the true system response and convergence of the design space are demonstrated on an airborne wind energy (AWE) application.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This research presents a convergence analysis for an iterative framework for optimizing plant and controller parameters for active systems. The optimization strategy fuses expensive yet valuable experiments with less accurate yet cheaper simulations. The numerical model is improved at each iteration through a cumulative correction law, using an optimally designed set of experiments. The iterative framework reduces the feasible design space between iterations, ultimately yielding convergence to a small design space that contains the optimum. This paper presents the derivation of an asymptotic upper bound on the difference between the corrected numerical model and true system response. Furthermore, convergence of the numerical model to the true system response and convergence of the design space are demonstrated on an airborne wind energy (AWE) application.
实验注入主动系统优化框架:理论收敛分析与机载风能案例研究
本研究提出了一个迭代框架的收敛分析,用于优化有源系统的对象和控制器参数。该优化策略融合了昂贵但有价值的实验和不太准确但便宜的模拟。利用优化设计的实验集,在每次迭代中通过累积修正规律对数值模型进行改进。迭代框架减少了迭代之间的可行设计空间,最终收敛到包含最优设计的小设计空间。本文给出了修正后的数值模型与系统真实响应差的渐近上界的推导。此外,数值模型对真实系统响应的收敛性和设计空间的收敛性在机载风能(AWE)应用中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信