Model-driven software engineering in practice: privacy-enhanced filtering of network traffic

Roel van Dijk, Christophe Creeten, J. V. D. Ham, J. V. D. Bos
{"title":"Model-driven software engineering in practice: privacy-enhanced filtering of network traffic","authors":"Roel van Dijk, Christophe Creeten, J. V. D. Ham, J. V. D. Bos","doi":"10.1145/3106237.3117777","DOIUrl":null,"url":null,"abstract":"Network traffic data contains a wealth of information for use in security analysis and application development. Unfortunately, it also usually contains confidential or otherwise sensitive information, prohibiting sharing and analysis. Existing automated anonymization solutions are hard to maintain and tend to be outdated. We present Privacy-Enhanced Filtering (PEF), a model-driven prototype framework that relies on declarative descriptions of protocols and a set of filter rules, which are used to automatically transform network traffic data to remove sensitive information. This paper discusses the design, implementation and application of PEF, which is available as open-source software and configured for use in a typical malware detection scenario.","PeriodicalId":313494,"journal":{"name":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106237.3117777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Network traffic data contains a wealth of information for use in security analysis and application development. Unfortunately, it also usually contains confidential or otherwise sensitive information, prohibiting sharing and analysis. Existing automated anonymization solutions are hard to maintain and tend to be outdated. We present Privacy-Enhanced Filtering (PEF), a model-driven prototype framework that relies on declarative descriptions of protocols and a set of filter rules, which are used to automatically transform network traffic data to remove sensitive information. This paper discusses the design, implementation and application of PEF, which is available as open-source software and configured for use in a typical malware detection scenario.
模型驱动软件工程的实践:网络流量的隐私增强过滤
网络流量数据包含大量用于安全分析和应用程序开发的信息。不幸的是,它通常也包含机密或其他敏感信息,禁止共享和分析。现有的自动化匿名化解决方案很难维护,而且往往已经过时。我们提出了隐私增强过滤(PEF),这是一个模型驱动的原型框架,它依赖于协议的声明性描述和一组过滤规则,用于自动转换网络流量数据以去除敏感信息。本文讨论了PEF的设计、实现和应用,PEF作为开源软件,配置用于典型的恶意软件检测场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信