Optimización evolutiva de contextos para la corrección fonética en sistemas de reconocimiento del habla

R. Cámara, Diego Campos-Sobrino, Mario Campos Soberanis
{"title":"Optimización evolutiva de contextos para la corrección fonética en sistemas de reconocimiento del habla","authors":"R. Cámara, Diego Campos-Sobrino, Mario Campos Soberanis","doi":"10.13053/rcs-148-8-22","DOIUrl":null,"url":null,"abstract":"Automatic Speech Recognition (ASR) is an area of growing academic and commercial interest due to the high demand for applications that use it to provide a natural way of communication. It is common for general purpose ASR systems to fail in certain applications that use a domain specific language. Different strategies have been used to reduce the error, such as providing a context that modifies the language model and post-processing correction methods. This article explores the use of an evolutionary process to generate an optimized context for a specific application domain, as well as different correction techniques based on phonetic distance metrics. The results show the viability of a genetic algorithm as a tool for context optimization, which added to a post-processing correction based on phonetic representations is able to reduce the errors on the recognized speech.","PeriodicalId":220522,"journal":{"name":"Res. Comput. Sci.","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Res. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/rcs-148-8-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Automatic Speech Recognition (ASR) is an area of growing academic and commercial interest due to the high demand for applications that use it to provide a natural way of communication. It is common for general purpose ASR systems to fail in certain applications that use a domain specific language. Different strategies have been used to reduce the error, such as providing a context that modifies the language model and post-processing correction methods. This article explores the use of an evolutionary process to generate an optimized context for a specific application domain, as well as different correction techniques based on phonetic distance metrics. The results show the viability of a genetic algorithm as a tool for context optimization, which added to a post-processing correction based on phonetic representations is able to reduce the errors on the recognized speech.
语音识别系统中语音修正语境的进化优化
自动语音识别(ASR)是一个日益增长的学术和商业兴趣的领域,因为对使用它提供自然通信方式的应用程序有很高的需求。通用ASR系统在使用特定领域语言的某些应用程序中失败是很常见的。已经使用了不同的策略来减少错误,例如提供修改语言模型的上下文和后处理纠正方法。本文探讨了使用进化过程为特定应用领域生成优化的上下文,以及基于语音距离度量的不同校正技术。结果表明,遗传算法作为上下文优化工具的可行性,加上基于语音表示的后处理校正,能够减少识别语音的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信