Contour-constrained Specular Highlight Detection from Real-world Images

Chenlong Wang, Zhongqi Wu, Jianwei Guo, Xiaopeng Zhang
{"title":"Contour-constrained Specular Highlight Detection from Real-world Images","authors":"Chenlong Wang, Zhongqi Wu, Jianwei Guo, Xiaopeng Zhang","doi":"10.1145/3574131.3574461","DOIUrl":null,"url":null,"abstract":"Specular highlight detection is a fundamental research topic in computer graphics and computer vision. In this paper, we present a new full-scale deep supervision model to detect specular highlights from single real-world images. The core of our approach is a novel self-attention module to improve the detection accuracy of the network. We also introduce a refinement strategy with a new loss function for highlight detection task by generating contour maps from the highlight detection masks. Experiments on a public dataset demonstrate that our approach outperforms state-of-the-art methods for highlight detection.","PeriodicalId":111802,"journal":{"name":"Proceedings of the 18th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3574131.3574461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Specular highlight detection is a fundamental research topic in computer graphics and computer vision. In this paper, we present a new full-scale deep supervision model to detect specular highlights from single real-world images. The core of our approach is a novel self-attention module to improve the detection accuracy of the network. We also introduce a refinement strategy with a new loss function for highlight detection task by generating contour maps from the highlight detection masks. Experiments on a public dataset demonstrate that our approach outperforms state-of-the-art methods for highlight detection.
轮廓约束的镜面高光检测从真实世界的图像
镜面高光检测是计算机图形学和计算机视觉领域的一个基础性研究课题。在本文中,我们提出了一种新的全尺寸深度监督模型,用于从单个真实世界图像中检测高光。我们的方法的核心是一个新的自关注模块,以提高网络的检测精度。我们还引入了一种基于新的损失函数的优化策略,通过高光检测蒙版生成等高线图来完成高光检测任务。在公共数据集上的实验表明,我们的方法优于最先进的高光检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信