Fast algorithm for minimizing Reed-Muller expansions of systems of incompletely specified MVL functions

A. Zakrevskij, L. Zakrevski
{"title":"Fast algorithm for minimizing Reed-Muller expansions of systems of incompletely specified MVL functions","authors":"A. Zakrevskij, L. Zakrevski","doi":"10.1109/ISMVL.1997.601375","DOIUrl":null,"url":null,"abstract":"A problem of the optimal implementation of multi-valued logic (MVL) functions on the basis of multivalued EXOR gates is considered. In this paper, we are concerned with the question of representing systems of MVL functions by minimum Reed-Muller expansions. A specific class of such representations, called superoptimal, is regarded. For the superoptimal solutions the number of different conjunctions in the sought-for system of polynomials equals to the number of linear independent output variables (on the area of definition). The proposed method enables to find a superoptimal solution for a given system of weakly specified MVL functions, if such a solution exists. It is based on the theory of linear vector spaces.","PeriodicalId":206024,"journal":{"name":"Proceedings 1997 27th International Symposium on Multiple- Valued Logic","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1997 27th International Symposium on Multiple- Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1997.601375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A problem of the optimal implementation of multi-valued logic (MVL) functions on the basis of multivalued EXOR gates is considered. In this paper, we are concerned with the question of representing systems of MVL functions by minimum Reed-Muller expansions. A specific class of such representations, called superoptimal, is regarded. For the superoptimal solutions the number of different conjunctions in the sought-for system of polynomials equals to the number of linear independent output variables (on the area of definition). The proposed method enables to find a superoptimal solution for a given system of weakly specified MVL functions, if such a solution exists. It is based on the theory of linear vector spaces.
不完全指定MVL函数系统的Reed-Muller展开式的快速最小化算法
研究了基于多值EXOR门的多值逻辑函数的最优实现问题。本文研究了用最小Reed-Muller展开表示MVL函数系统的问题。这种表示的一个特殊类别,称为超优,被认为。对于超优解,所寻找的多项式系统中不同连词的数量等于线性独立输出变量的数量(在定义区域上)。该方法能够找到给定弱指定MVL函数系统的超优解,如果这样的解存在。它是基于线性向量空间的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信