Feature selection for hypernasality detection using PCA, LDA, kernel PCA and greedy kernel PCA

E. Belalcázar-Bolaños, T. Villa-Cañas, S. Bedoya-Jaramillo, J. F. Garces-Rodriguez, J. Orozco-Arroyave, J. D. Arias-Londoño, J. Vargas-Bonilla
{"title":"Feature selection for hypernasality detection using PCA, LDA, kernel PCA and greedy kernel PCA","authors":"E. Belalcázar-Bolaños, T. Villa-Cañas, S. Bedoya-Jaramillo, J. F. Garces-Rodriguez, J. Orozco-Arroyave, J. D. Arias-Londoño, J. Vargas-Bonilla","doi":"10.1109/STSIVA.2012.6340591","DOIUrl":null,"url":null,"abstract":"Cleft lip and palate, due to morphological problems, allow the passage of air through the nasal cavity, introducing inappropriate nasal resonance during speech production and resulting in hypernasality speech. This paper proposes a methodology based on spectral and cepstral features, such as Modified Group Delay Functions with Mel Frequency Cepstral Coefficients, and uses relevance analysis and redundancy elimination, allowing the automatic hypernsality detection. The methodology seeks to evaluate four kinds of selection techniques: LDA (Linear Discriminator Analysis), PCA (Principal Component Analysis), Kernel PCA and Greedy Kernel PCA which provide a lot of information in the detection process and in turn contain the lowest value of redundancy. The experiments were performed considering a database which includes the five Spanish vowels uttered by 130 children whose voices were diagnosed as hypernasal by a phoniatrics expert plus 108 healthy were analyzed.","PeriodicalId":383297,"journal":{"name":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2012.6340591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cleft lip and palate, due to morphological problems, allow the passage of air through the nasal cavity, introducing inappropriate nasal resonance during speech production and resulting in hypernasality speech. This paper proposes a methodology based on spectral and cepstral features, such as Modified Group Delay Functions with Mel Frequency Cepstral Coefficients, and uses relevance analysis and redundancy elimination, allowing the automatic hypernsality detection. The methodology seeks to evaluate four kinds of selection techniques: LDA (Linear Discriminator Analysis), PCA (Principal Component Analysis), Kernel PCA and Greedy Kernel PCA which provide a lot of information in the detection process and in turn contain the lowest value of redundancy. The experiments were performed considering a database which includes the five Spanish vowels uttered by 130 children whose voices were diagnosed as hypernasal by a phoniatrics expert plus 108 healthy were analyzed.
基于PCA、LDA、核PCA和贪婪核PCA的鼻音检测特征选择
唇腭裂由于形态上的问题,使得空气可以通过鼻腔,在语音产生过程中引入不适当的鼻共振,导致高鼻音语音。本文提出了一种基于频谱和倒谱特征的方法,如带有Mel频率倒谱系数的修正群延迟函数,并使用相关性分析和冗余消除来实现超对称性的自动检测。该方法旨在评估四种选择技术:LDA(线性判别分析),PCA(主成分分析),核主成分分析和贪婪核主成分分析,它们在检测过程中提供了大量的信息,并依次包含最低的冗余值。实验是在一个数据库中进行的,其中包括130名被语音专家诊断为鼻音过重的儿童发出的五个西班牙语元音,以及108名健康儿童的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信