Optimal resource control in periodic real-time environments

K. Shin, C. M. Krishna, Yann-Hang Lee
{"title":"Optimal resource control in periodic real-time environments","authors":"K. Shin, C. M. Krishna, Yann-Hang Lee","doi":"10.1109/REAL.1988.51098","DOIUrl":null,"url":null,"abstract":"Three factors determine the optimum configuration of a multiprocessor at any epoch: the workload, the reward structure, and the state of the computer system. An algorithm is presented for the optimal (more realistically, quasi-optimal) configuration of such systems used in real-time applications with periodic reward rates and workloads. The algorithm is based on Markov decision theory. It is suggested that a change in the workload or the reward structure should be as powerful a motivation for reconfiguration as component failure. Such changes occur naturally over the course of operation: an example of an online transaction processing system with a workload and reward structure that has a period of a day is given.<<ETX>>","PeriodicalId":116211,"journal":{"name":"Proceedings. Real-Time Systems Symposium","volume":"8 17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REAL.1988.51098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Three factors determine the optimum configuration of a multiprocessor at any epoch: the workload, the reward structure, and the state of the computer system. An algorithm is presented for the optimal (more realistically, quasi-optimal) configuration of such systems used in real-time applications with periodic reward rates and workloads. The algorithm is based on Markov decision theory. It is suggested that a change in the workload or the reward structure should be as powerful a motivation for reconfiguration as component failure. Such changes occur naturally over the course of operation: an example of an online transaction processing system with a workload and reward structure that has a period of a day is given.<>
周期性实时环境下的最优资源控制
有三个因素决定了多处理器在任何时刻的最佳配置:工作负载、奖励结构和计算机系统的状态。提出了一种算法,用于具有周期性奖励率和工作负载的实时应用程序中这种系统的最优(更现实地说,准最优)配置。该算法基于马尔可夫决策理论。建议工作量或奖励结构的变化应该与组件故障一样是重新配置的强大动机。这种变化在操作过程中自然发生:给出了一个具有工作量和奖励结构的在线事务处理系统的示例,该系统的周期为一天。b>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信