Speaker normalization using HMM2

S. Ikbal, K. Weber, H. Bourlard
{"title":"Speaker normalization using HMM2","authors":"S. Ikbal, K. Weber, H. Bourlard","doi":"10.1109/NNSP.2002.1030076","DOIUrl":null,"url":null,"abstract":"We present an HMM2 based method for speaker normalization. Introduced as an extension of hidden Markov model (HMM), HMM2 differentiates itself from the regular HMM in terms of the emission density modeling, which is done by a set of state-dependent HMMs working in the feature vector space. The emission modeling HMM aims at maximizing the likelihood through optimal alignment of its states across the feature components. This property makes it potentially useful to speaker normalization, when applied to spectrum. With the alignment information we get, it is possible to normalize the speaker related variations through piecewise linear warping of frequency axis of the spectrum. In our case, (emission modeling) HMM based spectral warping is employed in the feature extraction block of regular HMM framework for normalizing the speaker related variabilities. After brief description of HMM2, we present the general approach towards HMM2-based speaker normalization and show, through preliminary experiments, the pertinence of the approach.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present an HMM2 based method for speaker normalization. Introduced as an extension of hidden Markov model (HMM), HMM2 differentiates itself from the regular HMM in terms of the emission density modeling, which is done by a set of state-dependent HMMs working in the feature vector space. The emission modeling HMM aims at maximizing the likelihood through optimal alignment of its states across the feature components. This property makes it potentially useful to speaker normalization, when applied to spectrum. With the alignment information we get, it is possible to normalize the speaker related variations through piecewise linear warping of frequency axis of the spectrum. In our case, (emission modeling) HMM based spectral warping is employed in the feature extraction block of regular HMM framework for normalizing the speaker related variabilities. After brief description of HMM2, we present the general approach towards HMM2-based speaker normalization and show, through preliminary experiments, the pertinence of the approach.
使用HMM2的说话人规范化
我们提出了一种基于HMM2的说话人归一化方法。介绍了隐马尔可夫模型(HMM)的延伸,HMM2区分自己从常规嗯排放密度建模而言,这是由一组依赖摘要向量空间的特征。发射建模HMM的目标是通过特征组件间状态的最优对齐来最大化可能性。当应用于频谱时,该属性使其对扬声器归一化可能有用。利用得到的对中信息,可以通过对频谱的频率轴进行分段线性扭曲,对扬声器相关的变化进行归一化。在我们的案例中,在正则HMM框架的特征提取块中采用(发射建模)基于HMM的频谱翘曲,对说话人相关变量进行归一化。在简要描述了HMM2之后,我们提出了基于HMM2的说话人归一化的一般方法,并通过初步实验证明了该方法的针对性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信