Singular value decomposition transform with an FFT-based algorithm on the connection machine CM5

T. Cao-Huu, C. Évéquoz
{"title":"Singular value decomposition transform with an FFT-based algorithm on the connection machine CM5","authors":"T. Cao-Huu, C. Évéquoz","doi":"10.1109/CCECE.1995.526609","DOIUrl":null,"url":null,"abstract":"We describe in this paper the parallel implementation of a modified, high radix fast Fourier transform (FFT) together with a Jacobi-based algorithm for matrix factorization to compute the singular value decomposition (SVD) of a 16384/spl times/16384 projection normal matrix arising from probability measure estimation in positron emission tomography (PET). We simplify the analysis significantly by working with block matrices and the Kronecker products because the symmetries built into the orthogonal decompositions allow the computation of the various factorizations of interest.","PeriodicalId":158581,"journal":{"name":"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1995.526609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We describe in this paper the parallel implementation of a modified, high radix fast Fourier transform (FFT) together with a Jacobi-based algorithm for matrix factorization to compute the singular value decomposition (SVD) of a 16384/spl times/16384 projection normal matrix arising from probability measure estimation in positron emission tomography (PET). We simplify the analysis significantly by working with block matrices and the Kronecker products because the symmetries built into the orthogonal decompositions allow the computation of the various factorizations of interest.
在连接机CM5上用基于fft的奇异值分解变换算法
本文描述了一种改进的高基数快速傅里叶变换(FFT)与基于jacobi的矩阵分解算法的并行实现,以计算正电子发射断层扫描(PET)中由概率测量估计产生的16384/spl次/16384投影正矩阵的奇异值分解(SVD)。通过使用块矩阵和Kronecker积,我们极大地简化了分析,因为正交分解中的对称性允许计算各种感兴趣的因数分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信