DRDLC: Discovering Relevant Documents Using Latent Dirichlet Allocation and Cosine Similarity

R. Ramya, T. Ganeshsingh, D. Sejal, K. Venugopal, S. S. Iyengar, L. Patnaik
{"title":"DRDLC: Discovering Relevant Documents Using Latent Dirichlet Allocation and Cosine Similarity","authors":"R. Ramya, T. Ganeshsingh, D. Sejal, K. Venugopal, S. S. Iyengar, L. Patnaik","doi":"10.1145/3301326.3301342","DOIUrl":null,"url":null,"abstract":"In recent years, the availability of digital documents over web is increased drastically and there is a need for effective methods to retrieve and organize the digital documents. Since data is dispersed globally and is unorganized, it is a challenging task to develop an effective methods that can generate high quality features in these documents. It is necessary to reduce the gap between users search intention and the retrieved results known as semantic gap. In this paper, Discovering Relevant Documents using Latent Dirichlet Allocation and Cosine Similarity (DRDLC) is proposed. Word similarity is computed using CS Cosine Similarity present in search results documents. LDA is applied on extracted patterns and documents. Hashing is used to extract high relevant documents efficiently. Further, term synonyms are identified using word net and the documents are re-ranked. Experiments using the model Relevance Feature Discovery (RFD) on Reuters Corpus Volume-1 (RCV-1) show that the proposed DRDLC framework results in improved performance by providing more relevant documents to the user input query.","PeriodicalId":294040,"journal":{"name":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301326.3301342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In recent years, the availability of digital documents over web is increased drastically and there is a need for effective methods to retrieve and organize the digital documents. Since data is dispersed globally and is unorganized, it is a challenging task to develop an effective methods that can generate high quality features in these documents. It is necessary to reduce the gap between users search intention and the retrieved results known as semantic gap. In this paper, Discovering Relevant Documents using Latent Dirichlet Allocation and Cosine Similarity (DRDLC) is proposed. Word similarity is computed using CS Cosine Similarity present in search results documents. LDA is applied on extracted patterns and documents. Hashing is used to extract high relevant documents efficiently. Further, term synonyms are identified using word net and the documents are re-ranked. Experiments using the model Relevance Feature Discovery (RFD) on Reuters Corpus Volume-1 (RCV-1) show that the proposed DRDLC framework results in improved performance by providing more relevant documents to the user input query.
DRDLC:利用潜在狄利克雷分配和余弦相似度发现相关文档
近年来,网络上数字文档的可用性急剧增加,需要一种有效的方法来检索和组织数字文档。由于数据在全球范围内分散且无组织,因此开发能够在这些文档中生成高质量特征的有效方法是一项具有挑战性的任务。有必要减少用户搜索意图与检索结果之间的差距,即语义差距。本文提出了一种基于潜在狄利克雷分配和余弦相似度(DRDLC)的相关文档发现方法。使用搜索结果文档中的CS余弦相似度计算单词相似度。LDA应用于提取的模式和文档。采用哈希算法高效提取高相关文档。此外,使用word net识别术语同义词,并对文档进行重新排序。在路透社语料库卷1 (RCV-1)上使用模型关联特征发现(RFD)进行的实验表明,提出的DRDLC框架通过为用户输入查询提供更多相关文档而提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信